An Update on Network Protocol Security

Anupam Datta
Stanford University

Stanford Computer Forum, 2007
Roadmap

- Network protocol examples
- Are industrial protocols secure?
 - Case studies of industry standards
- Research state-of-the-art
 - Fully automated bug-finding tools
 - Methods for proving absence of bugs
 - Protocol Composition Logic
 - Modular proof-techniques
 - Cryptographic soundness
- Conclusions and Future Work
Many Protocols

- Authentication
 - Kerberos
- Key Exchange
 - SSL/TLS handshake, IKE, JFK, IKEv2,
- Wireless and mobile computing
 - Mobile IP, WEP, 802.11i, 802.16e, Wi-Fi
- Electronic commerce
 - Contract signing, SET, electronic cash, ...
802.11i Wireless Authentication

- Supplicant
- UnAuth/UnAssoc
- 802.1X Blocked No Key
- 802.11 Association
- 802.11i Wireless Authentication
- EAP/802.1X/RADIUS Authentication
- 4-Way Handshake
- Group Key Handshake
- Data Communication
- MSK
- Widely used in wireless LANs
TLS protocol layer over TCP/IP

Widely used on internet
IKE sub-protocol from IPSEC

Result: A and B share secret $g^{ab} \mod p$

Used in corporate Virtual Private Networks
Kerberos Protocol

Running example in this talk

Client

KAS

AS-REQ

AS-REP

Client

TGS

TGS-REQ

TGS-REP

Client

Server

AP-REQ

AP-REP

Used for network authentication
Roadmap

- Network protocol examples
- Are industrial protocols secure?
 - Case studies of industry standards
- Research state-of-the-art
 - Fully automated *bug-finding* tools
 - Methods for proving *absence of bugs*
 - Protocol Composition Logic
 - Modular proof-techniques
 - Cryptographic soundness
- Conclusions and Future Work
Microsoft Security Bulletin MS05-042
Vulnerabilities in Kerberos Could Allow Denial of Service, Information Disclosure, and Spoofing (899587)
Published: August 9, 2005

Affected Software:
- Microsoft Windows 2000 Service Pack 4
- Microsoft Windows XP Service Pack 1 and Microsoft Windows XP Service Pack 2
- Microsoft Windows XP Professional x64 Edition
- Microsoft Windows Server 2003 and Microsoft Windows Server 2003 Service Pack 1
- Microsoft Windows Server 2003 for Itanium-based Systems and Microsoft Windows Server 2003 with SP1 for Itanium-based Systems
- Microsoft Windows Server 2003 x64 Edition
Kerberos Error

Formal analysis of Kerberos 5
• Several steps
 - Detailed core protocol
 - Cross-realm authentication
 - Public-key extensions to Kerberos

Attack on PKINIT
• Breaks association of client request and the response
• Prevents full authentication and confidentiality

Formal verification of fixes preventing attack
• Close, ongoing interactions with IETF WG

I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad
Public-Key Kerberos

◆ Extend basic Kerberos 5 to use PKI
 • Change first round to avoid long-term shared keys
 • Originally motivated by security
 - If KDC is compromised, don’t need to regenerate shared keys
 - Avoid use of password-derived keys
 • Current emphasis on administrative convenience
 - Avoid need to register in advance of using Kerberized services

◆ This extension is called PKINIT
 • Current version is PKINIT-29
 • Attack found in PKINIT-25; fixed in PKINIT-27
 • Included in Windows and Linux (called Heimdal)
 • Implementation developed by CableLabs (for cable boxes)
At time t_C, client C requests a ticket for ticket server T (using nonces n_1 and n_2):

$C \xrightarrow{\text{Cert}_C, [t_C, n_2]_{sk_C}, C, T, n_1} I$

The attacker I intercepts this, puts her name/signature in place of C's:

$I \xrightarrow{\text{Cert}_I, [t_C, n_2]_{sk_I}, I, T, n_1} K$

Kerberos server K replies with credentials for I, including: fresh keys k and AK, a ticket-granting ticket TGT, and K's signature over k,n_2:

(Ignore most of enc-part)

$I \xleftarrow{[k, n_2]_{sk_K}}_{pk_K}, I, TGT, \{AK, \ldots\}_k K$

I decrypts, re-encrypts with C's public key, and replaces her name with C's:

$C \xleftarrow{[k, n_2]_{sk_K}}_{pk_C}, C, TGT, \{AK, \ldots\}_k I$

- I knows fresh keys k and AK
- C receives K's signature over k,n_2 and assumes k, AK, etc., were generated for C (not I)
- Principal P has secret key sk_P, public key pk_P
- $\{\text{msg}\}_{\text{key}}$ is encryption of msg with key
- $[\text{msg}]_{\text{key}}$ is signature over msg with key
The KDC signs k, cksum (place of k, n_2)
 - k is replyKey
 - cksum is checksum over AS-REQ
 - Easier to implement than signing C, k, n_2

Formal proof: this guarantees authentication
 • Assume checksum is preimage resistant
 • Assume KDC’s signature keys are secret
Attacks on Industry Standards

- **IKE** [Meadows; 1999]
 - Reflection attack; fix adopted by IETF WG
- **IEEE 802.11i** [He, Mitchell; 2004]
 - DoS attack; fix adopted by IEEE WG
- **GDOI** [Meadows, Pavlovic; 2004]
 - Composition attack; fix adopted by IETF WG
- **Kerberos V5** [Scedrov et al; 2005]
 - Identity misbinding attack; fix adopted by IETF WG; Windows update released by Microsoft

Identified using logical methods
Roadmap

◆ Network protocol examples
◆ Are industrial protocols secure?
 • Case studies of industry standards
◆ Security analysis state-of-the-art
 • Fully automated *bug-finding* tools
 • Methods for proving *absence of bugs*
 - Protocol Composition Logic
 • Modular proof-techniques
 • Cryptographic soundness
◆ Conclusions and Future Work
Security Analysis Methodology

- Kerberos
- Protocol
- Property
 - Authentication
 - Attacker model
 - Security proof or attack
- Analysis Tool
 - Our tool: Protocol Composition Logic (PCL)
 - ~40 line axiomatic proof
 - Complete control over network
 - Perfect crypto
Automated Finite-State Analysis

Define finite-state system
- Bound on number of steps
- Finite number of participants
- Nondeterministic adversary with finite options

Pose correctness condition
- Authentication, secrecy, fairness, abuse-freeness

Exhaustive search using “verification” tool
- Error in finite approximation \Rightarrow Error in protocol
- No error in finite approximation \Rightarrow ???

Example
- SSL analysis with 3 clients and 2 servers
Bug-finding Tools and Case Studies

◆ Murphi model-checking of protocols
 • Generic model-checker developed by David Dill’s group at Stanford
 • Method for security protocol analysis developed by Mitchell, Shmatikov et al (1997-)
 • Many case studies including SSL, 802.11i
 • Tool and case studies available at http://cs259.stanford.edu
◆ Many other fully automated tools
 • AVISPA project, SRI constraint solver, ...
◆ Ready for industrial use
Roadmap

- Network protocol examples
- Are industrial protocols secure?
 - Case studies of industry standards
- Security analysis state-of-the-art
 - Fully automated *bug-finding* tools
 - Methods for proving *absence of bugs*
 - Protocol Composition Logic
 - Modular proof-techniques
 - Cryptographic soundness
- Conclusions and Future Work
Proving Security of Protocols

Cryptographic reductions
- More realistic model involving probabilistic polynomial time attackers
- Difficult to scale to industrial protocols

Symbolic methods and proof tools
- NRL Protocol Analyzer, Paulson’s Inductive Method, Process calculi, Specialized protocol logics (see http://cs259.stanford.edu)
- 2 challenges:
 - Scale to industrial protocols: modular analysis desired
 - Use cryptographic model instead of idealized symbolic model
- Progress on challenges in last 5 years
Our Result

Protocol Composition Logic (PCL):

• Unbounded number of sessions (vs. model-checking)
• Short high-level proofs: 2-3 pages
• Sound wrt
 - symbolic model
 - computational cryptography model
• Modular proof techniques

[DDMP03, ..., RDDM06]
PCL Results: Industrial Protocols

- IEEE 802.11i [IEEE Standards; 2004] [HSDDM05]
 - TLS/SSL [RFC 2246] is a component
 (Attack using model-checking; fix adopted by WG)
- GDOI Secure Group Communication [RFC 3547] [MP04]
 (Attack using PCL; fix adopted by IETF WG)
- Kerberos V5 [IETF ID; 2004] [CMP05,RDDM06]

- Mobile IPv6 [RFC 3775] in progress [RDM06]
- IKE/JFK family
 - IKEv2 [IETF ID;2004] in progress [RDM06]

Except Kerberos, results currently apply only to symbolic model
A protocol is a set of programs, one for each role
PCL: Syntax

- **Action formulas**
 \[a ::= \text{Send}(P,t) \mid \text{Receive}(P,t) \mid \ldots \]

- **Formulas**
 \[\varphi ::= a \mid \text{Indist}(P,t) \mid \text{GoodKeyAgainst}(X,k) \mid \text{Honest}(N) \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \exists x \varphi \mid a < a \mid \ldots \]

- **Modal formula**
 \[\varphi [\text{actions}]_P \varphi \]

- **Examples**
 - secret indistinguishable from random
 \[(X \neq A \land X \neq B) \supset \text{Indist}(X, \text{secret}) \]
Kerberos Stage 1 Property

- **Client guarantee**

 \[
 \text{true } [\text{Client1}(C, T, K)]_C \\
 \text{Honest}(C, T, K) \supset \\
 (\text{GoodKeyAgainst}(X, AKey) \lor \\
 X \in \{C, T, K\})
 \]

- **Key usable for encryption**
Complexity-theoretic semantics

\(Q \models \varphi \) if \(\forall \) adversary \(A \) \(\forall \) distinguisher \(D \) \(\exists \) negligible function \(f \) \(\exists n_0 \ \forall n > n_0 \) s.t.

\[
\frac{|[[\varphi]](T,D,f(n))|}{|T|} > 1 - f(n)
\]

- Fix protocol \(Q \), PPT adversary \(A \)
- Choose value of security parameter \(n \)
- Vary random bits used by all programs
- Obtain set \(T = T(Q,A,n) \) of equi-probable traces
PCL: Proof System

◆ Property of signature:
 \[\text{Honest}(X) \land \text{Verifies}(Y, m, X) \Rightarrow \text{Signed}(X, m)\]

◆ Soundness proof:
 ◆ Assume axiom not valid
 \[\exists A \exists D \forall \text{negligible } f \forall n_0 \exists n > n_0 \text{ s.t.} \]
 \[\|\varphi\|(T, D, f(n))/|T| < 1 - f(n)\]
 ◆ Construct attacker A' that uses A, D to break CMA-secure signature scheme
 ◆ Standard cryptographic reduction

[DDMST05, DDMW06]
Inductive Secrecy

- Pick a nonce \(s \) and set of keys \(K = \{k_0, k_1, k_2\} \)

- Secretive\((s, K)\)
 - Terms explicitly containing \(s \) are encrypted by a key in \(K \) before sending out.
 - New terms obtained through decryption by a key in \(K \) are re-encrypted by a key in \(K \) before sending out by an honest principal.

[RDDM06]
Inductive Secrecy \Rightarrow “Good” Keys

- **Secrecy axiom**
 \[
 \text{Secretive}(s, K) \land \text{GoodInit}(s, K) \Rightarrow \text{GoodKeyFor}(s, K)
 \]

- **Read**
 - If
 - protocol is “secretive”
 - nonce-generator is honest
 - key-holders are honest
 then
 - the key generated from the nonce is a “good” key (usable for encryption)

 Soundness proof is by reduction to a multi-party IND-CCA game [BBM00]
 One-time effort
CPCL analysis of Kerberos V5

- Kerberos has a staged architecture
 - First stage generates a nonce and sends it encrypted
 - Second stage uses this nonce as a key to encrypt another nonce.
 - Third stage uses the nonce exchanged in the second stage to encrypt other terms
- We prove “GoodKey”-ness of both the nonces assuming encryption scheme is IND-CCA
- Authentication properties proved assuming encryption scheme is INT-CTXT secure
- Modular proofs (including PKINIT) using composition theorems
- Result by Boldyreva et al showing that encryption scheme provides required properties
Logic and Cryptography: Big Picture

- Complexity-theoretic crypto definitions (e.g., IND-CCA2 secure encryption)
- Crypto constructions satisfying definitions (e.g., Cramer-Shoup encryption scheme)
- Semantics and soundness theorem
- Axiom in proof system
- Protocol security proofs using proof system
Conclusions

◆ Practical protocols may contain errors
 • Automated methods find bugs that humans overlook
◆ Variety of tools
 • Model checking can find errors
 • Proof method can show correctness
 – with respect to specific model of execution and attack
◆ Modular analysis is a challenge
◆ Closing gap between logical analysis and cryptography
 • Symbolic model supports useful analysis
 – Tools, case studies, high-level proofs
 • Computational model more informative
 – Includes probability, complexity
 – Does not require strong cryptographic assumptions
 – More accurately reflects realistic attack
 • Two approaches can be combined
 – Several current projects and approaches [BPW, MW, Blan, CH, ...]
 – One example: computational semantics for symbolic protocol logic

◆ Research area coming of age
 • Interactions with and impact on industry
Thanks!

Questions?