Security Decision Making in Interdependent Organizations

Presented by R. Ann Miura-Ko

Joint work with Benjamin Yolken, John Mitchell and Nicholas Bambos
Risk Management

- Security: not a technology issue alone
- Budgets and resources are limited
- Human error can lead to risk

- Should I invest in more user authentication?
 - Which kind is most effective?
- Do I worry more about a high probability, low loss event or a low probability, high loss event?
Why is risk management of security hard?
- Measurement is difficult
- User incentives generally not aligned

Security as an optimization problem
- Dynamic resource allocation under constraints
- Game played against an adversary
Model Fundamentals

- Companies make investments in security
- Your security depends on:
 - Own investments
 - Neighbors’ investments
- Neighbors:
 - Relationship ties their security to yours
- Relationship:
 - Beneficial
 - Harmful
Customer Education Effort

- Customers receive email communications from multiple departments at a bank
- Each product group constructs own email policy
- Inconsistent messaging \Rightarrow shared risk
Anti-Spam

- Investment in email path verification
 - Sender ID
 - Sender Policy Framework
- Two types of companies:
 - Email service provider
 - Business / organization
- Email path verification can benefit or damage anti-spam efforts of neighbors
- Will everyone implement?
Web Authentication

- Same / similar username and password for multiple sites
- Security not equally important to all sites

Shared risk for all
Motivation

- Many situations where this type of model makes sense
 - Peer-to-peer networks and security
 - Social networks and privacy
 - Health information sharing between hospitals
- Interactions can be beneficial as well as detrimental

- How much free riding occurs?
- Who invests and how much?
Network Model

- Network = Directed Graph
 - Nodes = Decision making agents
 - Links = influence / interaction
 - Weights = degree of influence

\[
W = \mathbf{W}'^T
\]

\[
\begin{bmatrix}
1 & -0.1 & 0.1 & 0 & 0.1 & 0 & 0.1 & 0.1 \\
-0.1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.2 & 0 & 1 & -0.1 & -0.1 & 0 & -0.1 & -0.1 \\
0 & 0 & -0.1 & 1 & 0 & 0 & 0 & 0 \\
0.2 & 0 & -0.1 & 0 & 1 & 0 & 0 & 0 \\
0.2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -0.1 & 0 & 0 & 1 & 0 & 0 \\
0.2 & 0 & -0.1 & 0 & 0 & 0 & 1 & 0 \\
0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
Incentive Model

- Each agent, i, selects investment, x_i
- Security of i determined by total effective investment:
 \[(Wx)_i = \sum_{j=1}^{N} w_{ij} x_j \]
- Benefit received by agent i:
 \[V_i(Wx)_i \]
- Cost of investment: $c_i x_i$
- Net benefit:
 \[U_i(x) = V_i((Wx)_i) - c_i x_i \]

\[V_i(Wx)_i \equiv \frac{1}{c_i} \log((Wx)_i) + \sum_{i=6}^{8} \sum_{i=9}^{} \]

\[U_i(x) = \frac{1}{\beta_i} \log((Wx)_i) - x_i \]

\[\beta_{citi} = \beta_{BofA} = 10 \]
How will agents react?

- Single stage game
- All agents maximize their utility function:
 \[U_i(x) = V_i((WX)_i) - c_i x_i \]
 \[U'_i(x) = 0 \Rightarrow V'_i(\bullet) = c_i \]
- \(b_i \) is where the marginal cost = marginal benefit for agent \(i \)
- If neighbor’s contribution > \(b_i \), \(x_i = 0 \)
- If neighbor’s contribution < \(b_i \), \(x_i = \text{difference} \)
How will agents react?

- All agents maximize their utility function:
 \[U_i(x) = \beta_i \log((Wx)_i) - x_i \]

- \(b_i \) is where the marginal cost = marginal benefit for agent \(i \)
 \[\beta_i \frac{1}{b_i} - 1 = 0 \Rightarrow b_i = \beta_i \]

- Each node seeks a level of \(b_i \) effective investment
 \[b = [10 \ 10 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1] \]
What is an equilibrium?

- Nash Equilibrium
 - Stable point (vector of investments) at which no agent has incentive to change their current strategy

\[U_i(x_i, x_{-i}) \geq U_i(x_i', x_{-i}) \forall i, x_i \in [0, \infty) \]

- This happens when:
 \[
 (Wx)_i = b_i \text{ if } x_i > 0 \\
 (Wx)_i \geq b_i \text{ if } x_i = 0
 \]

- Leverage Linear Complementarity literature
Analysis of the Model

- Diagonal Dominance:

 \[\sum_{j \neq i} |w_{ij}| \leq |w_{ii}| = 1 \forall i \]

- Existence and uniqueness of Nash Equilibrium
- Convergence to the Nash Equilibrium in a distributed, asynchronous manner
Free Riding

- Since others are contributing to an agent’s investment, some may choose not to invest at all
- Measure of contribution relative to what they need, *free riding index*:

\[
\gamma_i = \frac{(Wx)_i - x_i}{b_i}
\]
Web Authentication

- Utility function:

\[U_i(x) = \beta_i \log(Wx) - x_i \]
Conclusion

- Application of risk management modeling to real scenarios in security

Future direction:
- Optimization to improve equilibria
- Possible relaxations of diagonal dominance restriction