Computing Beyond Turing

How neocortical theory can lead to machine intelligence

Stanford Computer Forum
April 15, 2009
Jeff Hawkins
Numenta
What Does Cortex Do?

- People
- Cars
- Buildings
- Words
- Songs
- Ideas

World → Senses → Cortex

- light
- sound
- touch
- patterns
What Does Cortex Do?
- It builds a model of the world -

People
- Cars
- Buildings
- Words
- Songs
- Ideas

Senses
- light
- sound
- touch

Cortex
(cause1 0.22
cause2 0.07
cause3 0.00
cause4 0.63
cause5 0.08)

World
(cause)

Senses
Patterns
1 Discovers causes in the world
2 Infers causes of novel input
3 Predicts future
4 Creates motor behavior
- Knowledge is distributed hierarchically
- Self training through changing sensory patterns
- Each region is similar
- Knowledge is distributed hierarchically
- Self training through changing sensory patterns
- Each region is similar

Sensory data (skin)

Sensory data (retina)
Sensory data
Hierarchical Temporal Memory

Each node
- Learns common spatial patterns
- Learns common sequences

Sequence names passed up
Predicted spatial patterns passed down

Creates hierarchical model of causes
Bayesian methods resolve ambiguity
Belief Propagation In an HTM Node
Belief Propagation Equations In an HTM Node

1) Calculate likelihood over coincidence-patterns.

\[
y_i(t) = P(-e_i|c_i(t)) \propto \prod_{j=1}^{M} \lambda^{r_{ij}^{(M)}}(r_{ij}^{(M)})
\]

where coincidence-pattern \(c_i \) is the co-occurrence of \(r_{ij}^{(M)} \)'th Markov chain from child 1, \(r_{ij}^{(M)} \)'th Markov chain from child 2, \ldots, and \(r_{ij}^{(M)} \)'th Markov chain from child \(M \).

2) Feed-forward probability over Markov chains (temporal groups) using dynamic programming

\[
\lambda_t^{(g_r)}(g_r(t)) = P(-e_i|g_r(t)) \propto \sum_{c_{ij(t)} \in G^k} \alpha_t(c_{ij}, g_r)
\]

\[
\alpha_t(c_{ij}, g_r) = P(-e_i|c_{ij}(t)) \sum_{c_{ij(t-1)} \in G^k} P(c_{ij}(t)|c_{ij(t-1)}, g_r)\beta_{t-1}(c_{ij}, g_r)
\]

\[
\alpha_0(c_{ij}, g_r) = P(-e_i|c_{ij}(t = 0))P(c_{ij}(t = 0)|g_r)
\]

3) Calculate the belief distribution over coincidence patterns

\[
\text{Bel}_t(c_i) \propto \sum_{g_r \in G^k} P(g_r, g_0)\beta_t(c_i, g_r)
\]

\[
\beta_t(c_i, g_r) = P(-e_i|c_i(t)) \sum_{c_{ij(t-1)} \in G^k} P(c_{ij}(t)|c_{ij(t-1)}, g_r)\beta_{t-1}(c_{ij}, g_r)
\]

\[
\beta_0(c_i, g_r) = P(-e_i|c_i(t = 0))P(c_i(t = 0)|g_r, g_0)
\]

4) Calculate the messages to be sent to child nodes.

\[
\pi^{child} (g_m) \propto \sum_{c_i} I(c_i) \text{Bel}_t(c_i)
\]

where

\[
I(c_i) = \begin{cases}
1, & \text{if } g_m^{child} \text{ is a component of } c_i \\
0, & \text{otherwise}
\end{cases}
\]
NuPIC, Numenta Platform for Intelligent Computing

2) Dev Tools
 - Configurator
 - Trainer
 - Debugger

1) Run time environment
 - Supervisor
 - Node Processor 1
 - Node Processor 2
 - Node Processor N
 - Gigabit switch
 - Fileserver

3) Learning Algorithms
 - Node learning algorithms

Additional information:
- Node learning algorithms
- NuPIC, Numenta Platform for Intelligent Computing
Pictures: Simple Vision System (32 x 32 Pixels)
Time Based Inference
Time Based Inference

Static inference (with noise) 19%
Time Based Inference

Static inference (with noise)

19%
Time Based Inference

Static inference (with noise) 19%
Time Based Inference

Static inference (with noise) 19%

Time based inference (with noise) 52%
Time Based Inference

Static inference (with noise) 19%

Time based inference (with noise) 52%
Time Based Inference

Static inference (static noise) 19%

Time based inference (with noise) 52%
Time Based Inference

Static inference (with noise) 19%

Time based inference (with noise) 52%

Time based inference (with dynamic noise) 40%
HTM Vision In Digital Pathology
- discriminate glands from other structures -

Glands

Not glands
Promising Early Results

• We trained a network to recognize glands
 – Training set: 195 images of glands and non-glands
 – Test set: 80 novel images
• Result: test set accuracy was 95%
• The four errors were “reasonable”
Illusory Contour
Illusory Contour
Illusory Contour

Perceived line with no bottom up support
HTM Application Areas

- Medical: Digital pathology
- Voice: Speaker/gender id
- Security: Video behavior recognition
- Auto: Lane change prediction
- Banking: Fraud detection
- Web: Analytics
- Pharma: Drug discovery
- Networks: Attacks and Failures
- Gaming: Motion capture inference, Visual object editor
- Semantic analysis of text
Technical Challenges

- Algorithms
 - Sequence Memory algorithms
 - Attention mechanisms
 - Feedback
 - Sensory pre-processing

- Performance
- Silicon vs. software
To Learn More

- Read “On Intelligence”
- Sign up for Numenta newsletter
- Download demo applications
- Download NuPIC
- Attend HTM workshop June 25, San Jose, CA
- Internships or employment at Numenta

- jhawkins@numenta.com