2010 Poster Sessions : A Security Evaluation of DNSSEC with NSEC3

Student Name : Jason Bau
Advisor : John Mitchell
Research Areas: Computer Systems, Theory
Domain Name System Security Extensions (DNSSEC) and Hashed Authenticated Denial of Existence (NSEC3) are slated for adoption by important parts of the DNS hierarchy, including the root zone, as a solution to vulnerabilities such as "cache-poisoning" attacks. We study the security goals and operation of DNSSEC/NSEC3 using Murphi, a finite-state enumeration tool, to analyze security properties that may be relevant to various deployment scenarios.
Our systematic study reveals several subtleties and potential pitfalls that can be avoided by proper configuration choices, including resource records that may remain valid after the expiration of relevant signatures and potential insertion of forged names into a DNSSEC-enabled domain via the opt-out option. We demonstrate the exploitability of DNSSEC opt-out options in an enterprise setting by constructing a browser cookie-stealing attack on a laboratory domain. Under recommended configuration settings, further Murphi model checking finds no vulnerabilities within our threat model, suggesting that DNSSEC with NSEC3 provides significant security benefits.

Jason Bau is a Ph.D. student in the Electrical Engineering department of Stanford University, working as a research assistant in the Computer Security Lab. His research interests include network protocol security as well as web-application security.