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Rate-Distortion Coding

Encoder DecoderXn X̂nm ∈ {1, . . . , 2nR
}

{Xi}i∈Z: discrete-valued stochastic source

To each coding scheme a distortion D is assigned as

D = E dn(Xn
, X̂

n) �
1

n

n∑

i=1

Ed(Xi , X̂i)

The goal is to find a coding scheme that for each given α > 0 minimizes
the Lagrangian cost R + αD

Universal lossy compression

The performance of each coding scheme depends on the source
distribution.
Does there exist a universal coding scheme that works well for any
stationary ergodic source?
Yes.
Are there practical universal lossy compression algorithms?
For a long time it was believed that no such algorithm exists.

Empirical distribution

Consider binary alphabet X = X̂ = {0, 1}
Let m(yn) denote a 2× 2k matrix defining the (k + 1)th order empirical
distribution of yn

Example: k = 2,

m(yn) =
[

m0,00 m0,01 m0,10 m0,11

m1,00 m1,01 m1,10 m1,11

]

For b ∈ {0, 1}

mb,00(yn) = 1
n
∣∣{i : yi = b, yi−1

i−2
= [0, 0]

}∣∣

 

Conditional empirical entropy

Conditional empirical entropy of yn is defined as

Hk(yn) = H (Yk+1|Y k) when Y k+1 is distributed according to m
In the previous example:

H2(yn) =
∑
b1,b2

(m0,[b1,b2] + m1,[b1,b2])H(m0,[b1,b2],m1,[b1,b2])

Let α1 = m0,[b1,b2] and α2 = m1,[b1,b2]. Then

H(α1, α2) = H (X),

where X ∼ Bern( α1
α1+α2

)

Compression via Simulated Annealing

To each sequence yn assign energy E(yn) = Hk(yn) + αdn(xn, yn)
For T > 0, define a distribution on the space of all possible
reconstructions as pT (yn) ∝ e−E(yn

)/T

Simulated annealing: gradually decreasing temperature while sampling
from the distribution; finds x̂n such that

E(x̂n) ≈ min
yn
E(yn)

Theorem:[JW08]

Let X be a stationary and ergodic source. Then

lim
n→∞

lim
r→∞

E

[
1
n �LZ

(
X̂n
α,r(Xn)

)
+ αdn(Xn, X̂n)

]
= min

D≥0

[R(X,D) + αD] .

No bound on the required number of iterations

Universal lossy compression algorithm

An Exhaustive Search Algorithm:

For coding sequence xn, find sequence x̂n such that

x̂n = arg min
yn

[Hk(yn) + αdn(xn, yn)] ,

and describe it to the decoder using Lempel-Ziv algorithm.
Theorem:
For any stationary ergodic source X and k = o(log n),

E
[
�LZ(X̂n) + αd(Xn, X̂n)

]
→ min

D
[R(X,D) + αD]

Exponential Complexity

Another approach

Let
(P1) : min

yn
[Hk(yn) + αdn(xn, yn)]

(P2) : min
yn

[
∑

bk+1

∑
b
λbk+1,bmbk+1,b(yn) + αdn(xn, yn)]

Assume that we could find a set of coefficients {λbk+1,b}bk+1,b such that
(P1) and (P2) have the same minimizers
Why are we interested in this new representation?
Note:

∑
bk+1,b

[
λbk+1,bmbk+1,b(yn) + αdn(xn, yn)

]

= 1
n
∑

bk+1,b

[
λbk+1,b

n∑
i=1

1yi
i−k=[b,bk+1] + αd(xi , yi)

]

= 1
n

n∑
i=1

[
λyi ,yi−1

i−k
+ αd(xi , yi)

]
.

(P2) can be solved using Viterbi algorithm

Viterbi algorithm

Let the state at time i be
si = (yi−1

i−k
, yi)

One-to-one correspondence
between the paths inside the
trellis, sequence of states {si}

n
i=1

,
and also sequences y

n

We want to find the path in the
trellis minimizing

∑
n

i=1
wi(y

i

i−k
),

where

wi(si) = λ
yi ,y

i−1
i−k

+ αd(xi , yi)

y
i−1

i−k−1
yi

i−k

(0. . . . , 0, 0) (0. . . . , 0, 0)

(0, . . . , 0, 1) (0, . . . , 0, 1)

(1. . . . , 1, 0)(1. . . . , 1, 0)

(1, . . . , 1, 1)(1, . . . , 1, 1)

t = i − 1 t = i

yi = 0

y
i = 1

Do such coefficients exist?

Yes

Lemma
(P1) and (P2) have the same minimum values, if the coefficients are chosen
according to

λbk+1,b = ∂

∂mbk+1,b
H (m)

∣∣m∗n
where m∗n = m∗n(x̂n), where x̂n is a minimizer of (P1)

Do we have access to x̂n? Of course not!
But, we can find an approximate version of m∗n by solving a non-convex
optimization problem.

Practical implementation of the new algorithm

We need to approximate the coefficients
Solving the non-convex optimization problem is hard
Try simpler approximations for m∗, like m(xn)

- works well for small distortions
For larger distortions, we can use iterative approach

Simulation results
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Iterative Viterbi coder applied to an i.i.d. Bern.(q) source, q = 0.25
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