
Example: Dynamic portfolio optimization

• xt ∈ Rn dollar value of n = 20 assets at time t

• ut ∈ Rn dollar amount we buy or sell of each asset at time t

– the portfolio propagates over time according to

xt+1 = At(xt + ut)

– where At = diag(st) and (st)i > 0 is the return of asset i at time t

– let E[st] = s̄ and E[sts
T
t ] = Σ for all t

– at each time-step we incur a transaction fee, given by κ‖ut‖1
– the stage cost is a risk-revenue trade-off of the form

`(x, u) = 1Tu + κ‖u‖1 + γxTΣx

where we set γ = 0.1

• we restrict V̂ to be quadratic, i .e. to have the form

V̂ (x) = xTPx + 2pTx

Figure 1: Convergence rate of α̂(k)
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• results:

– we generated 5 random time traces from 5 random starting portfolios

– average cost of the approximate policy, Ĵ is compared to cost from model
predictive control (mpc) with horizon T = 10, Jmpc

– difference between α̂ and Ĵ is a rough sub-optimality gap

α̂ Ĵ Jmpc

-19.1 -14.6 43.3

Figure 2: Sample portfolio trajectories
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Approximate dynamic programming

• we restrict the class of functions we are interested in to obtain an approximate
value function V̂ , we restrict V̂ to be

– linear in some parameter r = [r1, . . . , rK ]

– convex (equivalent to r ∈ C for some convex set C)

V̂ (x) =

K∑
k=1

rkφk(x),

where φk, k = 0, . . . , K, are fixed basis functions

• with this restriction the problem (1) has K + 1 variables

• resultant V̂ and α̂ are guaranteed lower bounds on true values if we can solve
(1) exactly

• we can evaluate the approximate control policy using Monte Carlo methods

φ̂(x) = argmin
u
SV̂ (x, u)

Cutting set method

an iterative method to solve problems with infinite constraints

• Optimization
solve the problem with a finite subset of constraints, Ẑ
• Pessimization

invoke an oracle to identify violated constraints, append them to Ẑ
• repeat until convergence by some measure

Optimization - sampled problem

• let Ẑ ⊂ (Rn × Rm)l be a collection of l <∞ state-action pairs

• solve an approximate version of (1)

maximize α̂

subject to V̂ + α̂ ≤ SV̂ , ∀(x, u) ∈ Ẑ
r ∈ C

variables r ∈ RK and α ∈ R

Pessimization - convex-concave procedure

• to find violated constraints in (1) we want to solve

minimize SV̂ − V̂ ,
variables x ∈ Rn and u ∈ Rm

• this is a difference of convex functions, therefore hard in general

• we can identify local minima using the convex-concave procedure

– select starting point x̄ and some ε > 0

– solve

minimize SV̂ (x, u)−∇V̂ (x̄)T (x− x̄)

variables x ∈ Rn and u ∈ Rm

– set x̄ := x, repeat until ‖x− x̄‖ ≤ ε

• we approximate the concave function −V̂ by its gradient at x̄ which is ev-
erywhere an upper bound on −V̂

The stochastic control problem

• consider a linear dynamical system

– with state xt ∈ X ⊆ Rn and action ut ∈ U ⊆ Rm

– which propagates over time according to

xt+1 = A(wt)xt + B(wt)ut + c(wt), t = 0, 1, . . . ,

– where wt ∈ W is the noise and A,B, c are known functions

• with time-invariant stage cost function of the state and action

– ` : Rn × Rm ×W → R ∪ {∞}
– which we assume is convex

– we encode any constraints on x or u into `, i .e.

`(x, u) =∞, ∀ (x, u) 6∈ X × U
• the stochastic control problem is to find a state feedback control policy,
φ : X → U
– which we assume it is causal and time-invariant

– which maps the system state to an action

u(t) = φ(x(t)), t = 0, 1, . . . ,

• in order to minimize the average cost over time

Jφ = lim sup
T→∞

(1/T ) E
T−1∑
t=0

`(xt, ut, wt)

• where the optimal average cost J? = infφ Jφ

Dynamic Programming

• we define a modified Bellman operator

(Sf )(x, u) = E
w

[`(x, u) + f (Ax + Bu + c)]

for any f : Rn→ R

• if we can find a function V ? : Rn→ R and a constant α? ∈ R that satisfy

α? + V ? = min
u
SV ?, ∀x

• then it can be shown that J? = α?

• and the optimal control policy is given by

φ?(x) = argmin
u
SV ?(x, u)

• V ? is known as the value function of the dynamical system

• finding V ? and α? is hard in general

• they are the solutions to the following linear program

maximize α
subject to α + V ≤ SV, ∀(x, u)

(1)

variables V : Rn→ R and α ∈ R

• this problem is convex, but computationally intractable in most cases

– we are optimizing over an infinite number of variables
solution - approximate dynamic programming

– we have an infinite number of constraints over infinite indices x and u
solution - cutting set method
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