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The stochastic control problem

e consider a linear dynamical system
— with state 2; € X C R" and action u; €¢ Y4 C R™
— which propagates over time according to
ri11 = A(wp)xy + Blwp)ug + c(wy), t=0,1,...,
— where wy € VW is the noise and A, B, ¢ are known functions
e with time-invariant stage cost function of the state and action
- /:R"XR"™xW — RU{x}
— which we assume is convex
— we encode any constraints on x or u into £, i.e.
l(x,u) =00, V(r,u) X xU
e the stochastic control problem is to find a state feedback control policy,
. X —-U
— which we assume it is causal and time-invariant

— which maps the system state to an action

ult) = dlz(t)), t=0,1,...,

e in order to minimize the average cost over time

T—1
Jg = limsup(1/T) E Z O(xt, up, we)

e where the optimal average cost J* = infy J,

Approximate dynamic programming

e we restrict the class of functions we are interested in to obtain an approximate
value function V', we restrict V' to be

— linear in some parameter r = |r{,...,Tf]
— convex (equivalent to 7 € C for some convex set C)
K
Viz) =) rpoplz),
k=1

where ¢, k =0,..., K, are fixed basis functions
e with this restriction the problem (1) has K + 1 variables

e resultant V' and & are guaranteed lower bounds on true values if we can solve
(1) exactly

e we can evaluate the approximate control policy using Monte Carlo methods

o(x) = argmin SV (x, u)

u

Dynamic Programming

e we define a modified Bellman operator

(S, u) = E{l(z,u) + f(Azx + Bu + c)]

w
forany f : R" — R
e if we can find a function V* : R"” — R and a constant o* € R that satisfy
o+ V*=minSV*, Vx
Uu
e then it can be shown that J* = o~

e and the optimal control policy is given by

¢*(z) = argmin SV*(z, u)

u

e /" is known as the value function of the dynamical system

e finding VV* and o is hard in general

e they are the solutions to the following linear program
ma>.<imize Qv (1)
subject to a+V < SV, V(x,u)
variables V : R" — R and a € R

e this problem is convex, but computationally intractable in most cases

— we are optimizing over an infinite number of variables
solution - approximate dynamic programming

— we have an infinite number of constraints over infinite indices = and w
solution - cutting set method

Cutting set method

an iterative method to solve problems with infinite constraints
e Optimization
solve the problem with a finite subset of constraints, Z

e Pessimization
invoke an oracle to identify violated constraints, append them to Z

e repeat until convergence by some measure

Optimization - sampled problem

o let Z C (R x R™)! be a collection of | < oo state-action pairs

e solve an approximate version of (1)

AN

maximize «
subjectto V+a < SV, V(r,u) e Z
reC

variables r € R and a € R

Pessimization - convex-concave procedure

e to find violated constraints in (1) we want to solve

AN

minimize SV — V,
variables x € R" and u € R"
e this is a difference of convex functions, therefore hard in general
e we can identify local minima using the convex-concave procedure

— select starting point  and some € > (

— solve
minimize SV (z,u) — VV(z)! (z — 7)
variables x € R" and u € R

— set T := x, repeat until ||z — Z|| < €

e we approximate the concave function —V by its gradient at  which is ev-
erywhere an upper bound on —V

Example: Dynamic portfolio optimization

e r; € R" dollar value of n = 20 assets at time ¢
e u; € R" dollar amount we buy or sell of each asset at time ¢
— the portfolio propagates over time according to
Ty = Ap(rr + uy)
— where Ay = diag(s;) and (s¢); > 0 is the return of asset ¢ at time ¢
— let E[s¢] = 5 and E[sys! | = X for all ¢
— at each time-step we incur a transaction fee, given by k||u¢|

— the stage cost is a risk-revenue trade-off of the form
Oz, u) = 1w+ sl + 72" Sa
where we set v = 0.1

e we restrict V to be quadratic, 7.e. to have the form

Viz)=a' Pz +2p'x

Figure 1: Convergence rate of &(F)
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e results:

— we generated 5 random time traces from 5 random starting portfolios

— average cost of the approximate policy, J is compared to cost from model
predictive control (mpc) with horizon T" = 10, J™P¢

— difference between & and J is a rough sub-optimality gap

o) J | JHPe
-19.1/-14.6| 43.3

Figure 2: Sample portfolio trajectories

x104

—— MPC

— ADP

cost
N

0 100 200 300 400 500 600 700 800 900 1000
it




