
Professor William J. Dally
Curt Harting
Vishal Parikh
Jongsoo Park

The ELM project focuses on the creation of low-power,

high-performance, programmable embedded systems. By

designing systems composed of many efficient processor

and memory tiles and providing complete programming and

efficient run-time environments, ELM will significantly

reduce or eliminate the need of fixed-function hardware in

many systems.

- Homogeneous tiles with 4 small

processors and 8kB of software

controlled memory

- Instructions from software

managed instruction register file

- Data register files of varying size

- Hardware engines for data

movement

Software Characteristic Hardware Feature

Instruction Level Parallelism 2 Wide VLIW Ensemble Processors

Regular Data Access Patterns Hardware Stream Engines for block transfers

Small Code Size 64 entry, software controlled instruction register file

Tight Loops Auto-incrementing loop counters and indices into both
memory and GRF

Data Level Parallelism All 4 EPs in an Ensemble can execute in SIMD mode

Thread Level Parallelism Many core shared address space chip-level architecture

Transfer Type Time (norm)

Blocking Load 1

Blocking Streams 0.52

Double Buffering Stream 0.42

Execution Time of a Histogram
Program using Remote Data

0

20

40

60

80

100

120

140

160

180

Remote
LD/ST

Active
Message

C
yc

le
s Exe

Rcv

Net

Send

0

0.2

0.4

0.6

0.8

1

1.2

Remote
LD/ST

Active
Message

En
e

rg
y

(A
U

)

Exe

Rcv

Net

Send

Estimates of the latency and energy savings of using active messages instead of
loads and stores

- Access highly contented variables/locks at their home node via

active messages

- Fast barriers for decreasing synchronization overhead

- Configurable cache hierarchy allows programmers to take

advantage of different forms of sharing

The goal of the Efficient Supercomputing project is to

significantly reduce the amount of energy consumed

executing scientific code while providing programmers an

API that allows for productive algorithm implementation.

We do this by exposing locality to the programmer,

minimize unnecessary network traffic, and reduce cache

contention and meta-data overhead.

Application Pattern

Matrix Operations Predictable blocks, suited for software

Particle Simulation Neighborhoods, needs coalescing
scatters/gathers

Graph Algorithms Highly irregular with little locality

Memory Access Patterns
Second

Operations
EPower Operation

 


turesExtraStruc tionsExtraOpera OsNecessary

Necessary

EEE

E
Efficiency

TCO of a Data Center1

55% due to power requirements

1. Barroso, Holzle. The Data Center as a Computer. Morgan and Claypool.
2009

Data Center
Capital

8%

Server Capital
28%

Data Center
Op-Ex

8%
Server Op-Ex

1%

Power
Provisioning

16%

Power
Overhead

28%

Server
Power
11%

The CVA Group focuses on the creation of energy efficient, high-performance,

programmable computing systems. The embedded ELM architecture is comprised of

many efficient processor and memory tiles and provides complete programming and run-

time environments. The Kapok supercomputing architecture focuses on scientific

applications with large floating point data sets and process communication.

- Design high-performance efficient architectures, exposing fine-

grained parallelism to the user

- Provide novel mechanisms for programmers to write faster,

more efficient code

- Build a software design environment , allowing developers to

productively implement fine-grained parallel algorithms

- Reduce energy consumption further via hardware

implementation of the novel programming mechanisms.

Energy per CRC

- Consumer demand for computational capabilities is

increasing, while power envelopes are stationary or

decreasing.

- Scaling device dimensions and supply voltage used to

scale energy per operation enough, however, that is no

longer the case

- Architectural innovation becomes critical in making

computers more energy efficient and allowing

performance to continue to grow

- Implemented ELM’s compute and memory tiles

- Demonstrated ELM to be 3-4x more efficient than

conventional RISC cores

- Developed a working compiler and programming

system, translating C++ to ELM assembly

- In the process of open-sourcing the RTL

- Currently doing initial

design and analysis of

the Kapok memory

hierarchy and messaging

- Implementing a multi-

threaded simulator on

top of Intel’s PIN

instrumentation tool

- Building Energy Models

of key architectural

components

0.0

0.2

0.4

0.6

0.8

1.0

LEON3 ELM ELM - S1 ELM - S2

En
e

rg
y

(A
U

)

- Developers write high level

code as streams, kernels and

throughput constraints

- The programming system

optimizes and connects kernels

- The compiler optimizes and

parallelizes low-level kernels

- Intra-Ensemble communication via zero overhead message registers

- Software/hardware controlled on chip memories stages data transfers

- Hardware stream descriptors and block memory transfer mechanisms

provide efficient data movement

Exposed Data Locality

- Put data closest to the processor(s) that are currently using it

- Less energy spent locating and moving the data on loads and stores

- Managed either via hardware or software

