Mining Social Topologies from Email for Online Data Sharing

Diana MacLean, Sudheendra Hangal, Seng Keat Teh, Monica Lam and Jeffrey Heer

Stanford University
Introduction

Algorithm

Social Flows Interface

Evaluation

Conclusions
A Social Topology
Social Topologies

The Definition:
“the structure and content of a person’s social affiliations, consisting of a set of overlapping social groups and the subset/superset relationships between them.”

The important bits:
- overlapping
- nested
- extremely granular
A Snapshot of Today

- Online experience increasingly *social*.
- Social ties handled at each point of contact.
 - Facebook friends’ lists
 - Gmail contact groups
 - Dropbox communities ...
So what’s wrong with this picture?

- Requires *manual* setup (at each point of contact)
- Requires *manual* maintenance (at each point of contact)
- Does not scale
Our Vision

Your Social Topology is captured *latently* in your daily communication patterns anyway (think: e-mail).

- Mine it
- Maintain it
- Port it (or parts of it) to online services
Why e-mail?

- Everyone has it
- Spans several years
- Good labeled data
- Reflects changes in relationships over time
Let every unique recipient set be a group.

- too many groups
- incomplete
- lacking macrostructure
- it’s all about pruning
Our Attempt: Properties

creates a social topology from a sent mail folder that is

▷ ~80% smaller than naive model
▷ ~95% smaller than naive model with collapsed hierarchy
▷ easily navigable
▷ accurate and complete (more about this later)
Our Attempt: Outline

4 components:

- Phase 0: Data preparation/cleaning
- Phase 1: Extracting “social molecules”
- Phase 2: Merging “social molecules” into larger groups
- Phase 3: Organizing results into a hierarchy
Phase 1: Extracting “Social Molecules”

“A social molecule is a small group of people that comprise a relevant, logical social unit according to the users communication patterns.”

Obvious proxy: unique, frequent recipient sets

Important property: individuals may belong to several social molecules
Phase 1: Extracting “Social Molecules”

Let S be the set of social molecules.

Add each unique message recipient set s to S if s has high enough frequency in the corpus.
Phase 1: Extracting “Social Molecules”

Let S be the set of social molecules.

Add each unique message recipient set s to S if s has high enough frequency in the corpus.
Phase 1: Extracting “Social Molecules”

\[S = \{ \]
\[
\text{Mom, Dad, Grandma} \quad 10 \\
\text{Mom, Dad, Sister, Brother} \quad 30 \\
\text{Sister, Brother} \quad 62 (32) \\
\text{Mom, Dad, Sister} \quad 31 (1) \\
\text{Sister, Grandma} \quad 9 (4) \\
\text{Sister, Brother, Grandma} \quad 5 \\
\}

Add to \(S \) all the pairwise intersections of \(S \), under the same criteria.
Phase 1: Extracting “Social Molecules”

\[S = \{ \text{Mom, Dad, Grandma}^{10}, \text{Sister, Brother}^{62 (32)}, \text{Mom, Dad}^{40}, \text{Mom, Dad, Sister}^{31 (1)}, \text{Mom, Dad, Brother}^{30}, \text{Sister, Grandpa}^{9 (4)}, \text{Sister, Brother, Grandma}^{5} \} \]

Add to \(S \) all the pairwise intersections of \(S \), under the same criteria.
Phase 1: Extracting “Social Molecules”

\[S = \{ \text{Mom, Dad, Grandma} : 10, \text{Sister, Brother} : 62 (32), \text{Mom, Dad} : 40, \text{Mom, Dad, Sister} : 31 (1), \text{Sister, Grandma} : 9 (4), \text{Sister, Brother, Grandma} : 5 \} \]

Retain only those \(s \) with sufficient self identity

- The sharing error between \(s_i \) and \(s_j \), \(s_j \subset s_i \) is a measure of information leaked if \(s_i \) and \(s_j \) were merged.

\[serr(s_i, s_j) = \frac{|s_i| - |s_j| \times (msgs(s_j) - msgs(s_i))}{|s_i| \times msgs(s_j)} \]

- If \(serr(s_i, s_j) \) is large, we retain \(s_j \), otherwise we say \(s_i \) subsumes \(s_j \).
Phase 1: Extracting “Social Molecules”

S =

Mom, Dad, Grandma
10

Sister, Brother
62 (32)

Mom, Dad
40

Mom, Dad, Sister, Brother
30

Mom, Dad, Sister
31 (1)

Sister, Grandma
9 (4)

Sister, Brother, Grandma
5

Retain only those s with sufficient self identity

- The sharing error between \(s_i \) and \(s_j \), \(s_j \subset s_i \) is a measure of information leaked if \(s_i \) and \(s_j \) were merged.

\[
serr(s_i, s_j) = \frac{|s_i| - |s_j| \times (msgs(s_j) - msgs(s_i))}{|s_i| \times msgs(s_j)}
\]

- If \(serr(s_i, s_j) \) is large, we retain \(s_j \), otherwise we say \(s_i \) subsumes \(s_j \)
Phase 2: Merging Social Molecules

But we’re still missing macro-structure.

For each s_i, s_j, add $(s_i \cup s_j)$ to S if s_i and s_j are sufficiently "similar". Note that:

- use Jaccard similarity according to set membership with some threshold
- note: no sets are discarded
Phase 2: Merging Social Molecules

But we’re still missing macro-structure.

For each s_i, s_j, add $(s_i \cup s_j)$ to S if s_i and s_j are sufficiently “similar”. Note that:

- use Jaccard similarity according to set membership with some threshold
- note: no sets are discarded
Phase 3: Organizing S into a Hierarchy

- Find s', the s with greatest group mass in S. s' is a parent group
 - group mass of $s = \text{sum of msgs attributed to each person in } s$
- Assign all s similar to s' as children groups
 - Again, use Jaccard similarity according to set membership with some threshold
Applications to other data...

 Applies to almost any data with group tagging, and in which frequency \sim importance.
Our interface allows easy browsing and manipulation of social topologies.

Annotated points of interest highlight: (a) hierarchical nesting of subsets; (b) editable group labels; (c) tooltip and delete option on mouse hover; (d) new group creation; (e) group merge tools; (f) additional group editing tools and (g) option to add a new contact.
Using a.) Gmail Contacts tool, and b.) Social Flows, ask users to create partial social topologies congruent to contrived scenarios.
6 out of 19 users found the Gmail interface intolerable and quit the task!
User Study Evaluation: Results

- Topology creation in Social Flows is significantly faster
- Social Flows interface is significantly easier to use
- Resulting topologies in Social Flows are significantly more satisfactory
- Resulting topologies in Social Flows are more useful for online sharing tasks.
User Study Evaluation: Conclusions

- Our algorithmically generated templates:
 - reduce overhead construction time of social topologies
 - reduce cognitive recall required to remember group membership
 - are reasonably accurate

- Our Social Flows interface is an improvement over state of the art in managing social contacts
Take Aways

- Social Topologies data structure
- Algorithm to generate overlapping social groups (first that we know of)
- Port to sites for centralized sharing/access control
Introduction

Algorithm

Social Flows Interface

Evaluation

Conclusions