Optimizing Code Ensembles through Scaling

S. Oh (Stanford Univ.), A. Montanari (Stanford Univ.), J. Ezri (EPFL), R. Urbanke (EPFL)

Motivation

• Iteratively decoded channel coding (Low complexity)
• Asymptotic analysis (High performance)
• Little known about finite-length performance
 ⇒ Finite-length analysis can lead to better optimization of code ensemble for finite-length irregular LDPC code

Scaling Law

Ballot Problem

• n people vote iid Bernoulli(p), bill is accepted if 2/3 of the people are in favor
• Probability(Bill accepted) = \(Q(Z/\alpha) \)

\[P_B(n, \lambda, \rho, \epsilon) = Q(\sqrt{n}(\epsilon* - \epsilon - \beta n^{2/3})/\alpha) + O(n^{-1/3}) \]

• \(\epsilon^*, \alpha, \beta \) computed from code ensemble

Low-Density Parity-Check Codes

Variable nodes
Check nodes

Degree Distribution
 • \(\lambda(x), \rho(x) \)
 • Rate = 1 - \(\frac{\rho}{\lambda(x)} \)
Decoder
 • Iterative decoder
 • Message passing

Code Optimization

• Asymptotic analysis: Maximum Rate = 0.7332
• Scaling law: Maximum Rate = 0.7018
 ⇒ Finite-length analysis shows that the cost of having a smaller delay is 4.3% loss in rate