Taking Historical Inventories in Nonischemic Heart failure – Etiologies and Risk Factors Trial (THIN-HEART)
The Heart Failure Origin Organization Task (HOOT)

David P. Kao, MD¹, Aleksandra Pavlovic², Michael B. Fowler, MD², Amar K. Das, MD, PhD¹
¹Stanford Center for Biomedical Informatics Research, ²Division of Cardiovascular Medicine
Department of Medicine, Stanford University Palo Alto, CA

Background
- Patients with nonischemic dilated cardiomyopathy (NIDCM) are often labeled ‘idiopathic’ when a specific, single cause cannot be identified.
- Several groups have attempted to determine the prevalence of known causes of NIDCM in patients with initially unexplained NIDCM varying results.
- Criteria for diagnoses which rely on historical features may be inconsistent or not universally accepted.
- Quantification of risk factors is challenging due to fragmentation of clinical data regarding individuals.
- Data sources may have disparate representation schema with variable degrees of clinical relevance.
- Robust, consistent classification criteria are required to examine the relationship between known NIDCM risk factors on a population basis.
- Abstraction of clinical data into Unified Medical Language System Concepts will facilitate automated risk factor identification and patient phenotype description.
- Knowledge regarding risk factor definition and patient classification can be represented in the Web Ontology Language (OWL) and the Semantic Web Rule Language (SWRL)
- Codification of available clinical data and diagnostic criteria will facilitate discovery of new diagnoses and disease associations.
- These knowledge bases can be reused on data abstracted from any clinical data repository.

Methods
- Questionnaire Forms
- SNOMED-CT
- LOIN-C
- FMA
- Heartfaid HF Ontology
- UMLS Concepts
- OWL + SWRL
- Analytic Tasks

Results
- Successful translation of existing clinical data into OWL representation has allowed diagnostic criteria and research query restraints to use both specific numerical values and higher levels of abstraction.
- Collaboration with the EU-based Heartfaid group creates the potential for validation of conclusions using our data set in a larger population.
- Both specific hypothesis testing and multi-dimensional clustering analysis can be supported by the knowledge base.
- UMLS annotation will also allow integration with other platforms such as CVRGrid to extend the Heart Failure knowledge base and data sets available for analysis.

Conclusions

Acknowledgements
We wish to thank the Heartfaid Project for their generous collaboration in allowing us to use their heart failure ontology.
- Alan Jovic, Univ of Zagreb, Croatia
- Dragan Gamberger, Rudjer Boskovic Inst, Croatia
- Domenico Conforti, Univ of Calabria, Italy