Motivation: Answering Macroscopic Questions

Ex: Given certain symptoms, which genetic mutations should we test for?

<table>
<thead>
<tr>
<th>Unstructured Input Data (e.g., Pubmed articles)</th>
<th>Structured knowledgebase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td>Phenotype</td>
</tr>
<tr>
<td>KRT16</td>
<td>Pachyonychia Congenita</td>
</tr>
<tr>
<td>LTBP2</td>
<td>Pachyonychia Congenita</td>
</tr>
<tr>
<td>DEAF1</td>
<td>Pachyonychia Congenita</td>
</tr>
</tbody>
</table>

We then train a “noise-aware” variant of our end model:

Results on benchmark extraction tasks:

- **TAC-KBP Relation Extraction Challenge**: Achieved what would have been winning score (2014 Slot Filling)
- **LSTM: 6 pts. F1 (20%) over state-of-the-art LSTM baseline**
- **CDR Chemical / Disease Tagging**: We match state-of-the-art results (using simple logistic regression model)

We can achieve optimal results with less input from users!

Structure Learning: Identifying Correlated Sources

Cannot assume all sources are conditionally independent

Developed a structure learning method to automatically identify correlations among labeling functions

Structure learning is 100x faster and has ⅓ the errors of MLE.

Leads to average 1.5 F1 boost on existing applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Independent F1</th>
<th>Structure F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Tagging</td>
<td>66.3</td>
<td>68.9</td>
</tr>
<tr>
<td>Chemical-Disease</td>
<td>54.6</td>
<td>55.9</td>
</tr>
<tr>
<td>Tables</td>
<td>88.1</td>
<td>88.7</td>
</tr>
</tbody>
</table>

Socratic Learning: Correcting Generative Models

Sources can have different accuracies for latent classes in the data, which are difficult to identify manually.

Use features from the discriminative model to correct the generative model automatically.

Data Programming with Snorkel

Data programming is our framework for programmatically generating training data (*NIPS 2016, arxiv:1605.07723*)

Newly released as an open-source framework, Snorkel: http://snorkel.stanford.edu

To support these methods we need massive training datasets!

Increasing shift towards automatic feature generation:

- **Hand-Tuned Features**
- **Automatic Template-Based**
- **LSTMs (Deep Learning)**

Users write labeling functions (LFs):

- Encode domain heuristics
- Can be noisy / conflict
- Can subsume approaches like distant supervision, crowdsourcing, etc.
- Any scripting language works (e.g. Python)

We treat the LFs as a generative model, and learn their relative accuracies automatically

Can specify dependencies:

Snorkel denoises training labels, features, and learns automatically

Snorkel: Lightweight Extraction with Simple Input

Input: Unstructured information e.g., text, tables (plan to add images, diagrams)

Unlabeled data

Noisy Training Set Model

Learning & Inference

Snorkel users:

- User encodes domain heuristics as labeling functions

Cannot assume all sources are conditionally independent

Developed a structure learning method to automatically identify correlations among labeling functions

Structure learning is 100x faster and has ⅓ the errors of MLE.

Leads to average 1.5 F1 boost on existing applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Independent F1</th>
<th>Structure F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Tagging</td>
<td>66.3</td>
<td>68.9</td>
</tr>
<tr>
<td>Chemical-Disease</td>
<td>54.6</td>
<td>55.9</td>
</tr>
<tr>
<td>Tables</td>
<td>88.1</td>
<td>88.7</td>
</tr>
</tbody>
</table>

Socratic Learning: Correcting Generative Models

Sources can have different accuracies for latent classes in the data, which are difficult to identify manually.

Use features from the discriminative model to correct the generative model automatically.

Motivation: Answering Macroscopic Questions

Ex: Given certain symptoms, which genetic mutations should we test for?

<table>
<thead>
<tr>
<th>Unstructured Input Data (e.g., Pubmed articles)</th>
<th>Structured knowledgebase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td>Phenotype</td>
</tr>
<tr>
<td>KRT16</td>
<td>Pachyonychia Congenita</td>
</tr>
<tr>
<td>LTBP2</td>
<td>Pachyonychia Congenita</td>
</tr>
<tr>
<td>DEAF1</td>
<td>Pachyonychia Congenita</td>
</tr>
</tbody>
</table>

We then train a “noise-aware” variant of our end model:

Results on benchmark extraction tasks:

- **TAC-KBP Relation Extraction Challenge**: Achieved what would have been winning score (2014 Slot Filling)
- **LSTM: 6 pts. F1 (20%) over state-of-the-art LSTM baseline**
- **CDR Chemical / Disease Tagging**: We match state-of-the-art results (using simple logistic regression model)

We can achieve optimal results with less input from users!

Structure Learning: Identifying Correlated Sources

Cannot assume all sources are conditionally independent

Developed a structure learning method to automatically identify correlations among labeling functions

Structure learning is 100x faster and has ⅓ the errors of MLE.

Leads to average 1.5 F1 boost on existing applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Independent F1</th>
<th>Structure F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Tagging</td>
<td>66.3</td>
<td>68.9</td>
</tr>
<tr>
<td>Chemical-Disease</td>
<td>54.6</td>
<td>55.9</td>
</tr>
<tr>
<td>Tables</td>
<td>88.1</td>
<td>88.7</td>
</tr>
</tbody>
</table>

Socratic Learning: Correcting Generative Models

Sources can have different accuracies for latent classes in the data, which are difficult to identify manually.

Use features from the discriminative model to correct the generative model automatically.

Data Programming with Snorkel

Data programming is our framework for programmatically generating training data (*NIPS 2016, arxiv:1605.07723*)

Newly released as an open-source framework, Snorkel: http://snorkel.stanford.edu

To support these methods we need massive training datasets!

Increasing shift towards automatic feature generation:

- **Hand-Tuned Features**
- **Automatic Template-Based**
- **LSTMs (Deep Learning)**

Users write labeling functions (LFs):

- Encode domain heuristics
- Can be noisy / conflict
- Can subsume approaches like distant supervision, crowdsourcing, etc.
- Any scripting language works (e.g. Python)

We treat the LFs as a generative model, and learn their relative accuracies automatically

Can specify dependencies:

Snorkel denoises training labels, features, and learns automatically

Snorkel: Lightweight Extraction with Simple Input

Input: Unstructured information e.g., text, tables (plan to add images, diagrams)

Unlabeled data

Noisy Training Set Model

Learning & Inference

Snorkel users:

- User encodes domain heuristics as labeling functions
