
Rules-based Code

Structuring rules for efficiency: Tasks and Pools

 • Progress is made by repeatedly evaluating the rules
until the goal is reached.

 • Execution adapts automatically to concurrency and
faults.

 • Changes in control flow occur between rules.

: small, nonblocking piece of code executed
when a given condition is satisfied

: condition predicated on state variables associ-
ated with the module

Tasks
 • A task groups related rules, state, and a goal.
 • Once a task has reached its goal, its rules no longer

need to be evaluated (see Pools).
 • In RAMCloud, tasks are instances of classes that con-

tain rules, state and goal information.

Pools
 • Divide tasks into two groups: active and inactive.
 • Tasks in active pools will evaluate their rules.
 • Completed inactive tasks are removed from the pool

and thus will not evaluate their rules.

Discovering rules
The rules-based programing
style was discovered in ret-
rospect following the com-
pletion of many DFCT mod-
ules in RAMCloud.

Orthogonal but Related Work
The “Threads vs Events” debate is orthogonal to Rules-based programing in that it deals with the issue of concurrency but
not fault-tolerance. Both threads and events are necessary but not sufficient for DCFT modules.

Threads
 • Serial programing model does not work

for DCFT modules.
 • Need for additional synchronization

increases complexity and chance of
deadlock.

 • Tasks could be threaded but it does not
benefit RPC or I/O heavy actions.

Events
 • Similar to rules in its management

of concurrency and asynchrony, but,
unlike rules, event execution is still
logically serial.

 • Traditionally uses call-backs to ex-
plicitly define what code will execute
next (serial execution).

 • Nondeterminism due to concurrency and faults.
 • Previous action does not provide enough information to

determine next action.
 • No crisp algorithmic solutions.

Is there a better way to write DCFT Code? Why do we care?

 • Needed in Large-Scale Application Infrastructure:
Bigtable, Hadoop, RAMCloud, Chubby, Zookeeper, etc.

 • Typically manages collection of distributed resources.

Rise of Distributed, Concurrent, Fault-Tolerant Code

DCFT Code is Hard to Implement

Example DCFT Modules from RAMCloud
Log Replication and Recovery

 • Manages replication across thousands of machines.
 • Failures arise at arbitrary times.
 • Reaction to failures depends on system state.
 • Enforces ordering constraints to ensure safe operation.

Cluster Membership Updater
 • Manages multiple asynchronous RPCs in one thread.
 • Dynamically adjusts the number of outstanding RPCs.

Rules-based Programming for Distributed,
Concurrent, Fault-Tolerant Code
Collin Lee, John Ousterhout, and Ryan Stutsman

