
Rules-based Code

Structuring rules for efficiency: Tasks and Pools

•• Progress is made by repeatedly evaluating the rules
until the goal is reached.

•• Execution adapts automatically to concurrency and
faults.

•• Changes in control flow occur between rules.

: small, nonblocking piece of code executed
when a given condition is satisfied

: condition predicated on state variables associ-
ated with the module

Tasks
•• A task groups related rules, state, and a goal.
•• Once a task has reached its goal, its rules no longer

need to be evaluated (see Pools).
•• In RAMCloud, tasks are instances of classes that con-

tain rules, state and goal information.

Pools
•• Divide tasks into two groups: active and inactive.
•• Tasks in active pools will evaluate their rules.
•• Completed inactive tasks are removed from the pool

and thus will not evaluate their rules.

Discovering rules
The rules-based programing
style was discovered in ret-
rospect following the com-
pletion of many DFCT mod-
ules in RAMCloud.

Orthogonal but Related Work
The “Threads vs Events” debate is orthogonal to Rules-based programing in that it deals with the issue of concurrency but
not fault-tolerance. Both threads and events are necessary but not sufficient for DCFT modules.

Threads
•• Serial programing model does not work

for DCFT modules.
•• Need for additional synchronization

increases complexity and chance of
deadlock.

•• Tasks could be threaded but it does not
benefit RPC or I/O heavy actions.

Events
•• Similar to rules in its management

of concurrency and asynchrony, but,
unlike rules, event execution is still
logically serial.

•• Traditionally uses call-backs to ex-
plicitly define what code will execute
next (serial execution).

•• Nondeterminism due to concurrency and faults.
•• Previous action does not provide enough information to

determine next action.
•• No crisp algorithmic solutions.

Is there a better way to write DCFT Code? Why do we care?

•• Needed in Large-Scale Application Infrastructure:
Bigtable, Hadoop, RAMCloud, Chubby, Zookeeper, etc.

•• Typically manages collection of distributed resources.

Rise of Distributed, Concurrent, Fault-Tolerant Code

DCFT Code is Hard to Implement

Example DCFT Modules from RAMCloud
Log Replication and Recovery

•• Manages replication across thousands of machines.
•• Failures arise at arbitrary times.
•• Reaction to failures depends on system state.
•• Enforces ordering constraints to ensure safe operation.

Cluster Membership Updater
•• Manages multiple asynchronous RPCs in one thread.
•• Dynamically adjusts the number of outstanding RPCs.

Rules-based Programming for Distributed,
Concurrent, Fault-Tolerant Code
Collin Lee, John Ousterhout, and Ryan Stutsman

