Rules-based Programming for Distributed,
Concurrent, Fault-Tolerant Code

Collin Lee, John Ousterhout, and Ryan Stutsman

Is there a better way to write DCFT Code? Why do we care?

Rise of Distributed, Concurrent, Fault-Tolerant Code Example DCFT Modules from RAMCloud

« Needed in Large-Scale Application Infrastructure: Log Replication and Recovery
Bigtable, Hadoop, RAMCloud, Chubby, Zookeeper, etc. . Manages replication across thousands of machines.
« Typically manages collection of distributed resources. . Failures arise at arbitrary times.

« Reaction to failures depends on system state.

DCFT Code is Hard to Implement . . .
« Enforces ordering constraints to ensure safe operation.

« Nondeterminism due to concurrency and faults.
» Previous action does not provide enough informationto Cluster Membership Updater

determine next action. o Manages multiple asynchronous RPCs in one thread.
e No crisp algorithmic solutions. « Dynamically adjusts the number of outstanding RPCs.

Rules-based Code
Rules

Action|: small, nonblocking piece of code executed
Cond. f‘> when a given condition is satisfied
Cond. f‘> Cond.|: condition predicated on state variables associ-
ated with the module

> o Progress is made by repeatedly evaluating the rules

until the goal is reached.
« Execution adapts automatically to concurrency and

$ faults.
« Changes in control flow occur between rules.

Structuring rules for efficiency: Tasks and Pools

Tasks Pools
o Atask groups related rules, state, and a goal. Divide tasks into two groups: active and inactive.
« Once a task has reached its goal, its rules no longer o Tasks in active pools will evaluate their rules.
need to be evaluated (see Pools). « Completed inactive tasks are removed from the pool
e In RAMCloud, tasks are instances of classes that con- and thus will not evaluate their rules.

tain rules, state and goal information.

Orthogonal but Related Work

The “Threads vs Events” debate is orthogonal to Rules-based programing in that it deals with the issue of concurrency but
not fault-tolerance. Both threads and events are necessary but not sufficient for DCFT modules.

Threads Events
o Serial programing model does not work « Similar to rules in its management Discovering rules
for DCFT modules. of concurrency and asynchrony, but, The rules-based programing
« Need for additional synchronization unlike rules, event execution is still style was discovered in ret-
increases complexity and chance of logically serial. rospect following the com-
deadlock. « Traditionally uses call-backs to ex- vletion of many DFCT mod-
o Tasks could be threaded but it does not plicitly define what code will execute ules in RAMCloud.

benefit RPC or I/O heavy actions. next (serial execution).

