An Understandable Consensus Algorithm
Diego Ongaro and John Ousterhout

What is consensus?
- Consensus algorithms can replicate any deterministic program to make it fault-tolerant
- Play a key role in reliable, large-scale systems
- Practical consensus algorithms are:
 - Live as long as any majority of the cluster is up (assume servers fail by stopping)
 - Efficient: require one round of communication to guarantee durability in the normal case
 - Resilient to faulty clocks and message delays

How does consensus work?
- Consensus algorithms order requests into a replicated log
- State machines on each server process same sequence of requests from replicated log

Seems easy enough?
- Paxos is the dominant consensus algorithm
- Unfortunately, it's hard to understand:
 - Difficult to teach and learn (but nice for theory)
 - Poor choice for building systems
 - Difficulty stems from its poor decomposition
- We developed Raft to be easier to understand:
 - Decomposes into logical components
 - Reduces non-determinism and state space complexity

Paxos overview
- Basic Paxos: consensus on a single log entry
- Multi-Paxos: executes one instance of Basic Paxos for each log entry
 - But doing so naively is inefficient
- Complete algorithm looks nothing like Basic Paxos foundation

Raft overview
1. Elect a leader: the only server which creates new entries in the replicated log
 - Elect a replacement when the leader fails
2. Replication: the leader makes other servers' logs match its own, and notifies them when it's safe to execute commands
3. Safety: leader election is rigged to allow only servers with sufficiently up-to-date logs to win,
 - It's safe to execute commands once every future leader must have them

Which is more understandable?
- Taught students both Paxos and Raft
- 1 hour videos, 1 hour quizzes, short survey