Incentives in Crowdsourcing Markets with Heterogeneous Tasks

Gagan Goel, Google research
Afshin Nikzad, Stanford University
Adish Singla, ETH
Market Mechanisms for Crowdsourcing

Our model for a crowdsourcing market involves

- Heterogeneous Tasks
- Workers with different skill sets

Goal:
Efficient assignment of Tasks to Workers
A Real-World Experiment: Market Mechanisms for Crowdsourcing

The Wikipedia experiment:
- Tasks: wiki page translations
- Workers: Translators
- A limited budget for hiring workers

Goal:
Maximize total utility obtained from the pages that get translated

In the end, we apply our solution on this market
Overview of the Model

- Each worker has a cost
- Each task has a utility
- A bipartite graph describes the skill sets of workers
The Mechanism Design Problem: Example

- We do not assume that the workers’ costs are known.
- Rather, we design a mechanism to which they report their costs.
The Mechanism Design Problem

Given:

- Budget B
- A bipartite graph $G(W,T)$
- Each task has a publicly known utility
- Each worker has a private cost

Design a mechanism:

- Workers report their bid (costs) to the mechanism
- The mechanism assigns them to tasks
The Mechanism Design Problem

The mechanism must be:

● Truthful
 ○ No worker has incentive to report a fake cost

● Efficient
 ○ Ratio of the collected utility to the optimal utility
Our Mechanism
(a reverse auction)
Key Concept

- *buck-per-bang* rate r
 - Pay $r \cdot u$ to a worker for doing a task with utility u
1. Fix a buck-per-bang rate r

2. Prune the graph G
 - remove an edge (w,t) if $c_w > r u_t$

3. Generate an allocation in the new graph

4. Compute the prices (based on r)

5. Check for budget feasibility
Basic Definitions

- Fix an ordering on the agents, namely σ
- The tentative task assigned to i is $T(i)$
The Mechanism

1. \(r \leftarrow \infty \)

2. For \(i = 1 \) to \(|W| \)

 \[T(\sigma(i)) = \text{task with the highest utility} \]
 that is doable by \(\sigma(i) \)

3. Payments are possible with rate \(r \)?
 a. No: decrease \(r \) and repeat
 b. Yes: stop and pay.
Results

- The mechanism is oneway-truthful
- It is also truthful under a different payment rule
 - Pay each worker her critical bid
- It is Efficient
 - 3-approximation in large markets
- By choosing σ uniformly at random
 - The approximation ratio becomes $\frac{2e - 1}{e - 1} \approx 2.58$
 - The mechanism is truthful in large markets
Wikipedia translation project: MTurk Study

Distribution of bids

Top languages, topics and tasks

Worker’s profile
Wikipedia translation project: Results

- **Overall utility**
 - Graph showing utility (page views) versus budget ($).
 - Lines for different mechanisms:
 - Untruthful-Greedy
 - Truthful-UniformRate
 - Untruthful-Random
 - Truthful-MeanPrice

- **Utility per language**
 - Graph showing per language utility (page views) versus budget ($).
 - Lines for languages:
 - German
 - French
 - Russian
 - Arabic