
Parallel Log Cleaning

Log-structured Memory for
DRAM-based Storage

Steve Rumble, Diego Ongaro, Ryan Stutsman, Ankita Kejriwal, Mendel Rosenblum, John Ousterhout

● 50% of RAMCloud hardware cost is DRAM, but

● Existing memory allocators don't use memory efficiently,

 particularly when access patterns change:

● Non-copying allocators (e.g. malloc) suffer fragmentation

● Language-based copying garbage collectors waste memory

 to improve performance

● How to get high memory utilization and high performance?

 ● Exploit restricted use of pointers in storage systems

● Fragmented space reclaimed in parallel w/ normal operation

 ● Cleaner defragments space freed by deletes & overwrites

● Reclaims space by coalescing live data, writing to new

 survivor segments, freeing cleaned segments for head of log

Two-Level Cleaning

● Level 1: Compact segments in memory (no cleaning on disk)

● Level 2: Clean segments on disk (see "Parallel Log Cleaning")

● 30-100x more memory bandwidth than net/disk bandwidth

Problem with Conventional Memory AllocatorsRAMCloud Overview

● Datacenter storage system

● All data stored in DRAM at all times

● Low-latency: 5 - 10µs small RPCs across datacenter

● Large scale: 1,000 - 10,000 servers

● Goal: Enable novel applications with 100 - 1,000x

 decrease in storage latency / increase in ops/second

RAMCloud Structure: Pervasive Log

. . .

. . .

Client Client Client

Server Server Server Server

Datacenter
Network

Stanford Computer Forum Annual Meeting - April 2013 - http://ramcloud.stanford.edu

● Memory treated as large contiguous array: a log structure

 ● New/updated objects append to end, replicated on backups

● Log is cleaned (defragmented) to reclaim dead object space

● Hash table provides fast map from key to object in log

 ● One pointer to check object liveness when cleaning

 ● One pointer to update when object is relocated

. . .

Hash Table

Log-structured Memory

Segment 1 Segment 2 Segment N

(Head of Log)

Server

Object P

Object B

Object F

Segment N Segment N Segment N

Backup 12 Backup 5 Backup 103

. . .

Segment 1 Segment 2 Segment N

(Head of Log)

Segment 3 Segment 4

Fragmented Free Space

. . .

Segment 1 Segment N

(Head of Log)

Segment 3 Survivor Segment

● Divide segments into seglets, cleaning compacts segments

● Play to strengths/weaknesses of each medium

 ● RAM: High bandwidth, low capacity, local access

 ● Disk: Low bandwidth, high capacity, remote access

● More segments with fewer live objects = cheap disk cleaning

(after compaction)

Allocated Seglets Unallocated Seglets

● Segments 2 and 4 cleaned into single survivor segment

● Memory for 2 and 4 returned to free list (for future log heads)

Segment
(before compaction)

0

5

10

15

20

25

30

35

glibc 2.12

malloc

Hoard

3.9

jemalloc

3.3.0

tcmalloc

2.0

memcached

1.4.13

Java 1.7.0
OpenJDK

G
B

 U
se

d

Allocators

Total Memory Needed to Store 10GB of Live Data

Boehm

7.2d

Client Write Performance

0
30 40 50 60 70 80 90

0

0

50

100

150

200

250

30

30

40

40

50

50

60

60

70

70

80

80

90
0

50

100

150

200

250

O
b

je
ct

s/
s

(x
1

,0
0

0
)

1,000-byte Objects

100-byte Objects

90

O
b

je
ct

s/
s

(x
1

,0
0

0
)

100

200

300

400

500

50

100

150

200

250

300

5

10

15

20

25

30

O
b

je
ct

s/
s

(x
1

,0
0

0
)

10,000-byte Objects

M
B

/s
M

B
/s

M
B

/s

10

20

30

40

Memory Utilization (%)

Compaction, Locality
Compaction, No Locality
No Compaction, Locality
No Compaction, No Locality
Compaction, No Locality, Single Client

● Compaction improves

 client throughput by 2-8x

● Up to 400,000 durable writes

 per second at 90% memory

 utilization

● Bandwidth overhead of

 cleaning reduced by 2-20x

