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● 50% of RAMCloud hardware cost is DRAM, but

● Existing memory allocators don't use memory efficiently,

   particularly when access patterns change:

● Non-copying allocators (e.g. malloc) suffer fragmentation

● Language-based copying garbage collectors waste memory

   to improve performance

● How to get high memory utilization and high performance?

    ● Exploit restricted use of pointers in storage systems

● Fragmented space reclaimed in parallel w/ normal operation

    ● Cleaner defragments space freed by deletes & overwrites

● Reclaims space by coalescing live data, writing to new

    survivor segments, freeing cleaned segments for head of log

Two-Level Cleaning

● Level 1: Compact segments in memory (no cleaning on disk)

● Level 2: Clean segments on disk (see "Parallel Log Cleaning")

● 30-100x more memory bandwidth than net/disk bandwidth

Problem with Conventional Memory AllocatorsRAMCloud Overview

● Datacenter storage system

● All data stored in DRAM at all times

● Low-latency: 5 - 10µs small RPCs across datacenter

● Large scale: 1,000 - 10,000 servers

● Goal: Enable novel applications with 100 - 1,000x

   decrease in storage latency / increase in ops/second

 

RAMCloud Structure: Pervasive Log
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● Memory treated as large contiguous array: a log structure

    ● New/updated objects append to end, replicated on backups

● Log is cleaned (defragmented) to reclaim dead object space

● Hash table provides fast map from key to object in log

    ● One pointer to check object liveness when cleaning

    ● One pointer to update when object is relocated

. . .  

Hash Table

Log-structured Memory
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● Divide segments into seglets, cleaning compacts segments

● Play to strengths/weaknesses of each medium

    ● RAM: High bandwidth, low capacity, local access

    ● Disk: Low bandwidth, high capacity, remote access

● More segments with fewer live objects = cheap disk cleaning

(after compaction)

Allocated Seglets Unallocated Seglets

● Segments 2 and 4 cleaned into single survivor segment

● Memory for 2 and 4 returned to free list (for future log heads)

Segment
(before compaction)
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● Compaction improves

    client throughput by 2-8x

● Up to 400,000 durable writes

    per second at 90% memory

    utilization

● Bandwidth overhead of

    cleaning reduced by 2-20x


