QoS-Aware Cluster Management in Heterogeneous Datacenters
Christina Delimitrou and Christos Kozyrakis
Stanford University

Application Scheduling

Paragon: QoS-aware DC Scheduling [ASPLOS13]

- Problem: Scheduling in large cloud providers (e.g., Amazon EC2, Windows Azure, Google Compute Engine, vSphere)

- Challenges:
 1. **Unknown applications** → no a priori assumptions
 2. Workload interference → performance loss when high workloads are shared
 3. Server *heterogeneity* → loss when running on wrong servers
 4. Cannot afford detailed profiling → high overheads

- **Insight:** Leverage the system's knowledge on previously-scheduled applications → fast and accurate app classification

Paragon: Heterogeneity and Interference-aware DC Scheduler

- Similar to an online recommendation system (e.g., Netflix)
- **QoS-aware:** minimize interference from co-scheduled apps
- **Scalable & lightweight:** scales to 10,000s apps & servers
- **App agnostic:** no assumptions on app behavior

1. **Gain**
 - 178 apps 40 servers
 - 5,000 apps 1,000 EC2 servers

2. 47% higher utilization (without QoS violations)
3. More balanced utilization across servers
4. Shorter scenario execution time \(+\) per-app QoS guarantees

Cluster Management

Quasar: QoS-aware Cluster Management

- Cluster manager: Orchestrates DC operation
 - Where are applications scheduled? → **Paragon**
 - How many resources are allocated? → Mesos, Cloudscale, ...
 - When are apps scheduled? → priorities, admission control, ...

- **Naive approach:** Stitch together a resource allocation and a scheduling system → cluster manager

- **Problem:** Resource quantity & resource quality are dependent
 - allocation and scheduling should happen jointly to guarantee QoS & increase utilization

Quasar: Cluster management system that performs coordinated resource allocation and scheduling

- Considers both resource quantity (amount of resources) & quality (type of resources)
- Shifts from reservation-centric to performance-centric approach
- Leverages robust classification techniques to quickly classify an app for resource quantity & quality
- Organizes classification in classification layers to avoid exponential state space explosion
- Monitors & adapts allocation at runtime
- Applicable in: distributed frameworks, latency-critical online services, DBaaS, conventional single-node apps.

Gain

EC2 scenario: 2000 apps 200 servers
Memcached + best-effort apps

Admission Control

ARQ: Application-aware Admission Control

- When is admission control needed?
 1. Systems can become oversubscribed → determine which applications run when resources are scarce
 2. Some apps may have relaxed QoS constraints → promote apps with strict QoS guarantees

ARQ: Resource Quality-Aware Admission Control Protocol

- Multi-class queueing network → easy-to-satisfy apps not blocked behind demanding workloads
- Guarantee QoS → diverge apps to other queues to preserve performance
- Guarantee stability under different app arrival distributions
- Exits the oversubscribed phase faster

Statistical analysis of per-server pool freed times → decide switching time between queues

8500 apps, 1000 EC2 servers
99% of workloads → less than 10% degradation

Future Work

- Couple Quasar with isolation & partitioning schemes → performance isolation → higher utilization
- Enable OS policies geared towards latency-critical apps (usec granularity) → tail latency QoS for interactive online services
- Implications of resource-efficient cluster management in cloud pricing
- Implications in fairness, priorities, ...
- Classification-aided app development → resource-efficient software