Petroleum Reservoir Production Optimization Based on Approximate Dynamic Programming

Zheng Wen, Louis Durlnofsky, Benjamin Van Roy and Khalid Aziz

Smart Field Consortium, Stanford University

Motivation
- Shortage of energy resources calls for production optimization of petroleum reservoirs
- Petroleum reservoir production optimization is challenging
 - Large-scale nonlinear dynamic optimization problem
 - Complicated constraints on control
 - Current optimization techniques have various limitations
- We propose optimization algorithms based on Approximate Dynamic Programming (ADP) to solve this problem

Dynamic Optimization Model
- Petroleum reservoir can be modeled as a nonlinear dynamic system
- System dynamics are determined by:
 - Fluid dynamics in porous media
 - Mass balance equation
 - Geological model of the reservoir
- **Objective:** maximize the cumulative profit

Brief Overview of ADP
- Dynamic Programming (DP) potentially achieves the global optimum but suffers from "curse of dimensionality" when computing the value function J^*
- ADP tries to keep DP's merits but overcome the dimensionality curse

Case 2 Continued
- Result: Within 1% of the best local optimum
- 6% better than the worst local optimum

Case 3: Black-Oil Model with General Constraints
- 40x40 blocks, 2 producers and 2 injectors
- Constraints on control:
 - Bounded BHP
 - Minimum water cut at each production well
 - Maximum liquid injection/production rates
 - Minimum of production rate
- **Result:** 19% improvement over baseline

Conclusion and Ongoing Work
- Developed and successfully applied ADP for petroleum reservoir production optimization
- ADP appears to be a promising methodology for production optimization
- Ongoing works include:
 - Test ADP extensively for realistic 3D examples
 - Compare with other optimization techniques
 - Model uncertainty of geological parameters
 - Combine production optimization with well scheduling