Real-time convex optimization, with applications
Jacob Mattingley, Yang Wang and Argyris Zymnis
Information Systems Laboratory, Electrical Engineering, Stanford University

Convex optimization

- A convex optimization problem is of the form
 \[
 \begin{align*}
 \text{minimize} & \quad f(x) \\
 \text{subject to} & \quad x \in \mathcal{C}
 \end{align*}
 \]
 where
 - the cost function \(f \) is convex (graph of \(f \) curves upwards)
 - the constraint set \(\mathcal{C} \) is convex (closed to averaging)
- It includes linear and quadratic programming as special cases
- It can solve convex optimization problems extremely well
 - On a generic processor with a generic method for problems of up to \(10^7 \) variables
 - With specialized iterative methods on multiple processors for larger problems
- Many applications: control, combinatorial optimization, signal processing, machine learning, finance, ...
- Recent advances in convex optimization include
 - Robust optimization methods to handle parameter variation
 - \(\ell_1 \)-based heuristics for finding sparse solutions
 - Parsers/solvers that make rapid prototyping easy
- Code generation for embedded optimization in real-time systems

Example 1: Grasp force optimization

- Choose \(K \) grasping forces on object to
 - Resist external wrench
 - Respect friction cone constraints
 - Minimize maximum grasp force
- Convex problem (second-order cone program):
 \[
 \begin{align*}
 \text{minimize} & \quad \max_i ||f(i)||_2 \\
 \text{subject to} & \quad \sum_i Q(i)f(i) = f^\text{int} \\
 & \quad \sum_i g(i) \times (Q(i)f(i)) = r^\text{int} \\
 & \quad \sum_i \mu_i f(i) \geq (f^1)^2 + (f^2)^{1/2} \\
 \end{align*}
 \]
 variables \(f(i) \in R^3, i = 1, \ldots, K \) (contact forces)
- Can solve each instance in \(60 \mu s \)

Example 2: Minimum energy processor speed scheduling

- Processor adjusts its speed \(s_i \in [s^\text{min}, s^\text{max}] \) in each of \(T \) time periods
- Energy consumed in period \(t \) is \(\phi(s_t) \); total energy is \(E = \sum_{t=1}^T \phi(s_t) \)
- \(n \) jobs
 - Job \(i \) available at time \(t = A_i \); must finish by deadline \(t = D_i \)
 - Job \(i \) requires total work \(W_i \geq 0 \)
- \(S_i_t \geq 0 \) is effective processor speed allocated to job \(i \) in period \(t \)
 \[
 S_i_t = \sum_{i=1}^n S_{i,t} \geq W_i
 \]
- Choose speeds \(s_i \) and allocations \(S_{i,t} \) to minimize total energy \(E \)

- When \(\phi \) is convex, can be formulated as convex problem
 \[
 \text{minimize} \quad E = \sum_{t=1}^T \phi(s_t) \\
 \text{subject to} \quad s^\text{min} \leq s_t \leq s^\text{max} \\
 \quad s_t \geq \sum_{i=1}^n S_{i,t} \geq W_i, \quad t = 1, \ldots, T \\
 \quad \sum_{t=1}^T S_{i,t} \geq W_i, \quad i = 1, \ldots, n
 \]
- Can solve each instance in \(40 \mu s \)
- More sophisticated versions include
 - Multiple processors
 - Other constraints (thermal, speed slew rate, ...)
 - Stochastic models for (future) data

Code generation

- Say we have a quadratic program (QP), with variable \(x \in R^n \):
 \[
 \begin{align*}
 \text{minimize} & \quad x^T P x + q^T x \\
 \text{subject to} & \quad G x \leq h, \quad A x = b
 \end{align*}
 \]
- Could hand-write a fast solver, but requires much time and is complicated
- Instead, describe problem family in cvxquad (a Python package for convex optimization code generation):
 - \(A = \text{matrix}(\ldots); b = \text{matrix}(\ldots) \)
 - \(P = \text{param}(\ldots); q = \text{param}(\ldots) \)
 - \(G = \text{param}(\ldots); h = \text{param}(\ldots) \)
 - \(x = \text{optvar}(\ldots) \)
 - \(\text{gqpam} = \text{problem}(\text{minimize}(\text{quadform}(x, P) + tp(q) * x), \) \(\) \(\text{[G x <= h, A x == b])} \)
- Generate a solver for the problem family \(\text{gqpam} \) with \(\text{gqpam.codegen}() \)
- Output includes \(\text{gqpam/solver.c} \), and various ancillary files.
- Can solve an instance (in C) with
 - \(\text{status} = \text{solve}(\text{params, vars, work}) \)
- Solve times are up to \(1000 \times \) faster than using off-the-shelf solver

\[
\phi(s) \\
\begin{array}{cc}
\text{uniform} & \text{optimal}
\end{array}
\]

\[
\begin{array}{cc}
\text{job} & \text{time}
\end{array}
\]