

 Repair guidance in a
WYSIWYG data editor

Student: Eric Kao
Advisor: Michael Genesereth
Logic Group

Traditional data editing

Make a series of changes
 to the database

Commit changes

!
“Cannot commit because
 of constraint violations”

● Hard to understand
how to avoid
constraint violation

Restricted Interface
● Ask a series of questions in a fixed order
● Disallow choices that lead to violations
● Inflexible
● Hard to “navigate” between states

DataWYZ

● Unrestricted editing
● Visually rendered violations
● Visual repair guidance

Formal Representation
● D : Data

● e.g., { use(drug1), use(drug2), use(drug3),
~use(drug4) }

● C : Constraints
● e.g., {

use(drug1) => use(drug2),
use(drug2) => ~use(drug3),
use(drug1) => ~use(drug3)
}

Violation Pinpointing
● Pinpointing: highlight every minimal subset D'

of D such that D' violates C.
● e.g.,

mv(D,C) = { { use(drug1), use(drug3) } }
● Note: { use(drug1), use(drug2), use(drug3) } is not

minimal
● Naïve method has exponential running time
● Precompile constraints

Basic repair guidance
● Suggest which tuples to

add or remove
● Suggest adding

{neg(S) : S mv(D,C) }∈
● Suggest removing

{pos(S) : S mv(D,C) }∈

Problem: non-monotone progress
● Choosing certain changes lead to “bigger”

violations
● q(1) & q(2) => false
● q(2) & q(3) => false
● q(3) & q(4) & q(5) & q(6) & q(7) => q(1)

● No intuitive sense of progress.

Remove q(1)

Potentially affected
● Highlight all potentially affected tuples (PA)
● The set of highlighted tuple monotonically

decrease

● Naïve procedure: simulate all repair choices
● Precompile constraints to compute PA quickly

Remove q(1)

Back-tracking
● In following repair guidance, the user may

make choices that

Add drug1a

Add drug2a

Add drug3a

true => q(drug1a) | q(drug1b)
true => q(drug2a) | q(drug2b)
true => q(drug3a) | q(drug3b)
q(drug1a) & q(drug2a) & q(drug3a)=> false

Back-track-free guidance
● When back-track free guidance is enabled,

DataWYZ hides choices that would lead to
back-tracking true => q(drug1a) | q(drug1b)

true => q(drug2a) | q(drug2b)
true => q(drug3a) | q(drug3b)
q(drug1a) & q(drug2a) & q(drug3a)=> false

Add drug1a

Add drug2a

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

