
A transactional distributed kernel for
software defined networks

Vi
si

on

The controller as an OS that safely runs
many network applications from many sources
(e.g., partially trusted, non-experts)

Controllers

Switches

Application 2 Application 1

Fine-grained locks on state
automatically prevent read/
write conflicts.

Automatic transactions to
hardware using barriers for
dirty state.

Controllers

Switches

Application

flow mod barrier

Agreement
 between hardware state & software

 representation of it

Consistency
of software state as many

apps modify it

 Today: Programmer
•  Locks
•  Database

 Today: Programmer
•  Issue barriers
•  Handle errors

 Sergeant: System-enforced Sergeant: System-enforced

Novel transaction scheduling
algorithm provides fairness.

Fairness
guaranteed between applications
accessing underlying resources

 Today: Programmer
•  ???

 Sergeant: System-enforced

Controllers

Switches

Application

Permissions hide switches from
apps not allowed to operate on
them.

Isolation
between different applications

 Today: Programmer
•  ???

 Sergeant: System-enforced

Behram Mistree,
Daniel Jackoway,

& Philip Levis

S
in

gl
e

C
on

tro
lle

r
M

ul
tip

le

C
on

tro
lle

rs

~6.82 ms/program

~4.94 ms/program

Up to 6k transactions/s on a
controller.

Hundreds of transactions/s
per switch.

Time difference from
parallelization of two-phase
commit. (Ask about this.)

Programmer sees single-threaded view

M
od

el

Updating hardware = writes to software objects

RPCs to other controllers included in transaction
(nested, distributed transactions)

Overview

Four Features of SERGEANT

Evaluation
Agreement, consistency, isolation, fairness with adequate performance

All experiments in mininet; ~.5ms RTT for multiple controllers

