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ABSTRACT

Earth Mover’s Distance (EMD) is an intuitive and natural distance
metric for comparing two histograms or probability distributions.
We propose to jointly optimize the ground distance matrix and the
EMD flow-network based on partial ordering of histogram distances
in an optimization framework. Two applications in computer vision
are used to demonstrate the effectiveness of the algorithm: firstly,
we apply the optimized EMD value to face verification, and achieve
state-of-the-art performance on public face data sets; secondly, we
use the learned EMD flow-network to analyze the internal structure
of a set of faces, and consistent paths that demonstrate intuitive
transitions on certain facial attributes are found.

1 Supervised Earth Mover’s Distance

1.1 Introduction of EMD

Input:
Source histogram p ∈ Rn: regarded as piles of earth at various loca-
tions (bins). The amount of earth in each pile equals to the value of
each corresponding bin.
Destination histogram q ∈ Rn: regarded as several holes, the values
of which represent their capacities.
Ground distance matrix D = {dij}: dij defines the cost of moving a
unit of earth from the i-th bin of p to the j-th bin of q.
Output:
Flow matrix F = {fij}: fij denotes the amount of earth moved from
the i-th bin of p to the j-th bin of q.
Formulation:

EMD (p,q) = min
f∈C(p,q)

dT f , (1)

C (p,q) =
{
f | f = vec (F ) , F ∈ Rn×n, FT1 = q, F1 = p, fij ≥ 0,∀ i, j

}
,

1.2 Supervised Earth Mover’s Distance with Triplets

Training Data: N triplets of histograms {(pi,qi, ri) , i = 1, · · · , N}.
For each triplet,EMD (pi, ri) ≥ EMD (pi,qi) , ∀i.
Objective: an optimal ground distance d so that the resulting EMD
values satisfy as many constraints as possible.
Formulation:
Turn each hard constraint into a large-margin constraint:

EMD (pi, ri)− EMD (pi,qi) ≥ 1− ξi, ξi ≥ 0, ∀i, (2)

The overall problem is formulated as:

min. ∥d∥22 + C · ξξξT1
s.t. dT (Mg −Mf ) ≥ 1T − ξξξT , ξξξ ≥ 0

d ∈ D
fi = argmin

f∈C(pi,qi)

dT f , gi = argmin
g∈C(qi,ri)

dTg, ∀i, (3)

The convex feasible domain for the ground distance is

D =
{
d | d = vec(D), D ∈ Rn×n, Dij ≥ 0, Dii = 0, ∀i, j

}
. (4)

1.3 Supervised Earth Mover’s Distance In a More
General Setting

Training Data: sets of similar pairs {(pi,qi) , i = 1, · · · , Ns} and dis-
similar pairs {(rj , sj) , j = 1, · · · , Nd}.
Objective: The two sets of distances, {EMD (pi,qi) , i = 1, · · · , Ns}
and {EMD (rj , sj) , j = 1, · · · , Nd}, are separated as much as possible.
Formulation:
The problem is naturally transformed into a max-margin problem:

min. ∥d∥22 + C
(
ξξξTf 1+ ξξξTg 1

)
s.t. dTMf ≤ −1T + ξξξTf + t, ξξξf ≥ 0

dTMg ≥ 1T − ξξξTg + t, ξξξg ≥ 0

d ∈ D
fi = argmin

f∈C(pi,qi)

dT f , gi = argmin
g∈C(ri,si)

dTg, ∀i, (5)

1.4 Solving for Optimal Ground Distance

The formulated problem is bi-convex with respect to the two sets of
variables {d} and {Mf ,Mg}:
Given the ground distance d: it can be naturally decoupled into
independent standard EMD problems;
Given the flows Mf and Mg, the optimization problem in Eq. 3 can
be re-written as:

min. ∥d∥22 + C · ξξξT1
s.t. dT (Mg −Mf ) ≥ 1T − ξξξT , ξξξ ≥ 0

d ∈ D, (6)

which is a Quadratic Programming (QP) that is similar to the soft-
margin SVM.

Given the flows fi and gi, Eq. 5 can also be rewritten as a QP:

min. ∥d∥22 + C
(
ξξξTf 1+ ξξξTg 1

)
s.t. dTMf ≤ −1T + ξξξTf + t, ξξξf ≥ 0

dTMg ≥ 1T − ξξξTg + t, ξξξg ≥ 0

d ∈ D, (7)

Finally, the supervised EMD learning problem is solved using alter-
nating optimization:

Input: Initial estimation of the ground distance matrix d0 using
Euclidean distance or any other suitable metric, threshold ε, and
damping factor α.
k = 0;
while

∥∥dk − dk−1
∥∥
2
≥ ε do

Given ground distance dk−1, solve for the flows Mk
f and Mk

g ;
Given the flows Mk

f and Mk
g , solve for the ground distance dk

using Eq. 6 or Eq. 7;
dk ← dk−1 + α(dk − dk−1);
k ← k + 1;

end while

2 Face Verification Using Supervised EMD

Reference Identities: a set of known identities, each represented by
a set of diverse face images of one person.

• The faces of the i-th reference person: matrix Xi.

• The total K identities: X = [X1, X2, · · · , XK ].

A test face y is reconstructed by X with a L2 regularization term:

min. ∥y −Xααα∥2 + λ ∥ααα∥p , (8)

Then the test face is: y ≈ Xααα, where ααα = [ααα1;ααα2; . . . ;αααK ].
The reconstruction error using only the coefficients from the i-th
identity gives a strong indication of the affinity between the face
and the i-th identity:

ei (y) = ∥y −Xiαααi∥2 . (9)

The vector of the reconstruction errors e (y) = [e1(y), e2(y), . . . , eK(y)]
is transformed to a similarity score vector s (y):

si(y) = exp(− 1

2σ2
i

(ei(y)− µi)
2
), (10)

and normalized to have L1 norm equal to unity, giving our final
histogram-like face descriptor as illustrated in the following figure.

The representation is further expanded to multiple local facial parts
to make it robust to variations of pose, illumination, expression, etc.

3 EMD Flow for Face Attribute Analysis

Motivation: Several faces might have exactly the same EMD to an
anchor face, but the information about how they differ from the
anchor image is contained in the flow-network.
Objective: The flow-network is used to analyze face attribute
changes within a set of faces of a same person.

Definition 1 A sequence is a re-ordering of
{(i, j) | i = 1, 2, . . . , n, j = 1, 2, . . . , n}.

Definition 2 A Monge sequence is a sequence in which for every
(i, j) that precedes (i, s) and (r, j), the ground distance matrix D sat-
isfies dij + drs ≤ dis + drj .

If a Monge sequence exists, then a greedy algorithm based on the
Monge sequence yields the optimal solution of EMD.
Each flow matrix is decomposed into two parts:

• Monge flow: the flows that result from the Monge subse-
quence.

• non-Monge flow: the remaining entries in the flow matrices
that cannot be solved using the greedy algorithm.

The distance between two flow-networks is measured by L2 distance
between the non-Monge components of the two flows.
Face A → C differs in the same way as A → B if the distance be-
tween the two flows Flow(A→ B) and Flow(A→ C) is small enough
in the way defined above.
A longer path A→ B → C → D → · · · can be formed by finding more
faces along the path repetitively.

4 Experimental Results

4.1 Face Verification on Standard Face Data Sets

Data sets:

• Labeled Faces in the Wild (LFW) (13,233 face images from news
photos).

• PubFig (58,797 images of 200 public figures or celebrities).

Reference identities: 60 identities of development set from PubFig.
Seven fiducial points are detected for each face, and the local facial
patches at 3 different scales (4 × 4, 8 × 8, and 12 × 12) are extracted
as the local representation.
The average ROC curve over 10-fold cross validation on PubFig (1st
row) and LFW (2nd row):

The average accuracy for LFW :.

Method Accuracy ± Std
Supervised EMD 0.8853 ±±± 0.0107
CSML+SVM 0.8800 ± 0.0037
DML-eig combined 0.8565 ± 0.0056
Attribute and Similie classifiers 0.8529 ± 0.0123
Multiple LE+comp 0.8445± 0.0046
Hybrid, aligned 0.8398 ± 0.0035
EMD w/o Learning 0.7977 ± 0.0121
Eigenfaces 0.6002 ± 0.0079

4.2 Face Attribute Transition Using EMD

Left: Several paths within face collection of one identity, each re-
flecting some transition on certain facial attribute.
Right: given a pair of example faces showing expression change
from smiling to neutral, the same transition is “transferred” to some
other smiling faces, transforming other smiling faces to neutral ex-
pression.


