
SI-TM: Reducing Aborts in Transactional Memory
Heiner Litz and David Cheriton

heiner.litz@stanford.edu, david.cheriton@cs.stanford.edu

Transactional Memory
•Alternative synchronization mechanism to locks
•Optimistic, multiple threads can enter critical region
• Improves programmability
•Tracks memory accesses, aborts on conflict

2-Phase Locking (2PL)
•Simple to implement
•Tracks every transactional read and write access
•Aborts on every RW, WR, WW conflict

Conflict Serializability (CS)
•Permits certain conflicts
•Tracks dependencies between transactions
•Reorders transactions if necessary
•Aborts on cyclic dependencies

Transaction Example

Start TX0
-
Read(X)
-
-
-
-
Read(Y)
-
Commit
2PL: Abort
CS: Abort
SI: Commit

Start TX1
-
Read(Y)
-
Write(X)
-
-
End TX1
2PL: Abort
CS: Commit
SI: Commit

Start TX2
-
-
Write(Y)
-
End TX2
2PL: Commit
CS: Commit
SI: Commit

WaRWaR

RaW

TX0

TX1

TX2

Dependency Graph

SI-TM
•Based on Snapshot Isolation, MVCC
•Reads always return consistent data
•Aborts only on write-write conflicts
• Ignores all read-write, write-read conflicts
•Read only transactions always commit
•Requires efficient snapshotting capability

HICAMP Memory System
•Stores memory objects as segments
•Segment = directed acyclic graph (DAG)
•Segment uniquely identified by root
•Efficient copy on write

HICAMP DAGs
A

A B

Segment Root

0 A

1 B

2 ..

.. ..

Implementation
• Implemented SI-TM in Zsim hardware simulator
•Embedded into RSTM framework
•Patched malloc() to allocate in HICAMP memory
•Ran STAMP benchmark suite
•High contention, 1-64 threads
•Outperforms both 2PL and CS

Results

genome intruder kmeans labyrinth vacation

A
bo

rt
R

at
e

(N
or

m
al

iz
ed

) 2PL
CS
SI-TM


