SI-TM: Reducing Aborts 1n Transactional Memory
Heiner Litz and David Cheriton

heiner.litz@stanford.edu, david.cheriton@cs.stanford.edu

Transactional Memory

e Alternative synchronization mechanism to locks
e Optimistic, multiple threads can enter critical region
e Improves programmability

e Tracks memory accesses, aborts on conflict

2-Phase Locking (2PL)

e Simple to implement

e Tracks every transactional read and write access
e Aborts on every RW, WR, WW contflict

Conflict Serializability (CS)

e Permits certain contlicts
e Tracks dependencies between transactions
e Reorders transactions if necessary

e Aborts on cyclic dependencies

HICAMP DAGs

Implementation

e Implemented SI-TM 1n Zsim hardware simulator
e Embedded into RSTM framework

e Patched malloc() to allocate in HICAMP memory
e Ran STAMP benchmark suite

e High contention, 1-64 threads

e Outpertorms both 2PL and CS

Transaction Example

Start TXO Start TX1 Start TX2

Read(X) Read(Y) WaR -
_ WaR _ Write(Y)

- Write(X) -
- - End TX2
- - 2PL: Commit
Read(Y) End TX1 CS: Commit
- 2PL: Abort Sl: Commit
Commit CS: Commit
2PL: Abort Sl: Commit
CS: Abort
Sl: Commit

Dependency Graph

TXO /\
TX2
SI-TM

e Based on Snapshot Isolation, MVCC

e Reads always return consistent data

e Aborts only on write-write conflicts

e [gnores all read-write, write-read contlicts
e Read only transactions always commit

e Requires efficient snapshotting capability

HICAMP Memory System

e Stores memory objects as segments
e Segment = directed acyclic graph (DAG)
e Segment uniquely 1dentified by root

e Efficient copy on write

Results

||2PL
ICS
ISI-TM

Abort Rate (Normalized)

genome intruder kmeans labyrmth vacation

